油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (5): 726-733.doi: 10.13809/j.cnki.cn32-1825/te.2022.05.003
郭平1(),张万博1,JIA Na2,陈馥3,刘煌1,汪周华1,葛性波3
收稿日期:
2021-07-13
发布日期:
2022-09-27
出版日期:
2022-10-26
作者简介:
郭平(1965—),男,硕士,教授,主要从事油气藏流体相态、气田及凝析气田开发、油气藏工程、注气提高采收率、储气库及油气开发基础问题等研究工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: 基金资助:
GUO Ping1(),ZHANG Wanbo1,JIA Na2,CHEN Fu3,LIU Huang1,WANG Zhouhua1,GE Xingbo3
Received:
2021-07-13
Online:
2022-09-27
Published:
2022-10-26
摘要:
CO2驱最小混相压力(MMP)是衡量能否达到混相驱的重要参数,因此,为提高混相驱的应用率,迫切需要降低CO2与原油间的最小混相压力,而油藏中加入助混剂是降低最小混相压力的有效手段。目前助混剂按照所含元素可分为碳氟、硅氧烷、碳氢(含氧)三大类。为了降低成本,提高助混效果,应在碳氟类助混剂加入碳氢类结构,向混合型的方向发展,而碳氢类助混剂具有良好的助混效果,并且有提升的空间,关键是找到合适的亲CO2结构,计算机模拟是研究微观机理,辅助结构设计的重要手段。相比于碳氟类和硅氧烷类,碳氢类助混剂的成本较低,从成本的角度看最有应用潜力。目前影响助混剂规模化应用的主要因素是成本上的限制,未来推广应用需要石油与化工从业者的密切配合,重点介绍助混剂降低MMP的机理,总结了目前已有助混剂的结构以及助混效果,分析了助混效果的影响因素,展望了助混剂设计的发展方向。
中图分类号:
Ping GUO,Wanbo ZHANG,Na JIA, et al. Research progress of assistants for reducing CO2-crude oil minimum miscible pressure[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 726-733.
[1] | 李阳, 吴胜和, 侯加根, 等. 油气藏开发地质研究进展与展望[J]. 石油勘探与开发, 2017, 44(4):569-579. |
LI Yang, WU Shenghe, HOU Jiagen, et al. Progress and prospects of reservoir development geology[J]. Petroleum Exploration and Development, 2017, 44(4): 569-579. | |
[2] |
GODOI J M A, MATAI P H L D. Enhanced oil recovery with carbon dioxide geosequestration: First steps at Pre-salt in Brazil[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(3): 1429-1441.
doi: 10.1007/s13202-021-01102-8 |
[3] |
YÁÑEZ E, RAMÍREZ A, NÚÑEZ-LÓPEZ V, et al. Exploring the potential of carbon capture and storage-enhanced oil recovery as a mitigation strategy in the Colombian oil industry[J]. International Journal of Greenhouse Gas Control, 2020, 94: 102938.
doi: 10.1016/j.ijggc.2019.102938 |
[4] | 胡滨, 胡文瑞, 李秀生, 等. 老油田二次开发与CO2驱油技术研究[J]. 新疆石油地质, 2013, 34(4):436-440. |
HU Bin, HU Wenrui, LI Xiusheng, et al. Research on secondary development of old oilfields and CO2 flooding technology[J]. Xinjiang Petroleum Geology, 2013, 34(4): 436-440. | |
[5] | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1):20-28. |
QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28. | |
[6] |
CHOUBINEH A, HELALIZADEH A, WOOD D A. The impacts of gas impurities on the minimum miscibility pressure of injected CO2-rich gas-crude oil systems and enhanced oil recovery potential[J]. Petroleum Science, 2019, 16(1): 117-126.
doi: 10.1007/s12182-018-0256-8 |
[7] |
HASSAN A, ELKATATNY S, ABDULRAHEEM A. Intelligent prediction of minimum miscibility pressure (MMP) during CO2 flooding using artificial intelligence techniques[J]. Sustainability, 2019, 11(24): 7020.
doi: 10.3390/su11247020 |
[8] |
CHEN H, ZHANG C, JIA N H, et al. A machine learning model for predicting the minimum miscibility pressure of CO2 and crude oil system based on a support vector machine algorithm approach[J]. Fuel, 2021, 290: 120048.
doi: 10.1016/j.fuel.2020.120048 |
[9] |
HILL L B, LI X C, WEI N. CO2-EOR in China: A comparative review[J]. International Journal of Greenhouse Gas Control, 2020, 103: 103173.
doi: 10.1016/j.ijggc.2020.103173 |
[10] |
LIU J R, SUN L, LI Z Z, et al. Experimental study on reducing CO2-oil minimum miscibility pressure with hydrocarbon agents[J]. Energies, 2019, 12(10): 1975.
doi: 10.3390/en12101975 |
[11] |
MAHDAVI E, ZEBARJAD F S, TAGHIKHANI V, et al. Effects of paraffinic group on interfacial tension behavior of CO2-asphaltenic crude oil systems[J]. Journal of Chemical & Engineering Data, 2014, 59(8): 2563-2569.
doi: 10.1021/je500369e |
[12] |
CHO J, LEE K S. Effects of hydrocarbon solvents on simultaneous improvement in displacement and sweep efficiencies during CO2-enhanced oil recovery[J]. Petroleum Science and Technology, 2016, 34(4): 359-365.
doi: 10.1080/10916466.2015.1137940 |
[13] | 吴莎, 何佳, 李遵照, 等. 降低CO2驱最小混相压力的调节剂研究[J]. 中国科技论文, 2015, 10(18):2161-2164. |
WU Sha, HE Jia, LI Zunzhao, et al. Studies on the chemical agent system for reducing in the minimal miscibility pressure of CO2 flooding[J]. China Sciencepaper, 2015, 10(18): 2161-2164. | |
[14] |
SARDARI F S, MOVAGHAR M R K. A simulation approach to achieve the best miscible enrichment in gas flooding and chemical injection process for enhanced oil recovery[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(2): 230-246.
doi: 10.1002/apj.2067 |
[15] |
LUO H, ZHANG Y C, FAN W Y, et al. Effects of the non-ionic surfactant (CiPOj) on the interfacial tension behavior between CO2 and crude oil[J]. Energy & Fuels, 2018, 32(6): 6708-6712.
doi: 10.1021/acs.energyfuels.8b01082 |
[16] | LIAO P L, LIU Z Y, LIU K E D, et al. Polyesters-based oil-CO2 amphiphiles: Design and miscible promoting ability[J]. Acta Physico-Chimica Sinica, 2019, 36(10): 1907034. |
[17] | 杨思玉, 廉黎明, 杨永智, 等. 用于CO2驱的助混剂分子优选及评价[J]. 新疆石油地质, 2015, 36(5):555-559. |
YANG Siyu, LIAN Liming, YANG Yongzhi, et al. Molecular optimization design and evaluation of miscible processing aids applied to CO2 flooding[J]. Xinjiang Petroleum Geology, 2015, 36(5): 555-559. | |
[18] |
HEMMATI-SARAPARDEH A, AYATOLLAHI S, GHAZANFARI M H, et al. Experimental determination of interfacial Tension and miscibility of the CO2-crude oil system: Temperature, pressure, and composition effects[J]. Journal of Chemical & Engineering Data, 2014, 59(1): 61-69.
doi: 10.1021/je400811h |
[19] |
GONG H J, QIN X J, SHANG S X, et al. Enhanced shale oil recovery by the huff and puff method using CO2 and cosolvent mixed fluids[J]. Energy & Fuels, 2020, 34(2): 1438-1446.
doi: 10.1021/acs.energyfuels.9b03423 |
[20] |
WEI B, GAO H, PU W F, et al. Interactions and phase behaviors between oleic phase and CO2 from swelling to miscibility in CO2-based enhanced oil recovery (EOR) process: A comprehensive visualization study[J]. Journal of Molecular Liquids, 2017, 232: 277-284.
doi: 10.1016/j.molliq.2017.02.090 |
[21] | 贾储源. 二氧化碳驱表面活性剂的设计与合成[D]. 吉林: 吉林大学, 2014. |
JIA Chuyuan. Design and preparation of surfactants for CO2 EOR[D]. Jilin: Jilin University, 2014. | |
[22] |
DRAMÉ A, DE GIVENCHY E T, DIENG S Y, et al. One F-octyl versus two F-butyl chains in surfactant aggregation behavior[J]. Langmuir, 2013, 29(48): 14815-14822.
doi: 10.1021/la403173v pmid: 24188050 |
[23] |
MOHAMED A, SAGISAKA M, GUITTARD F, et al. Low fluorine content CO2-philic surfactants[J]. Langmuir, 2011, 27(17): 10562-10569.
doi: 10.1021/la2021885 pmid: 21780744 |
[24] |
SAGISAKA M, ONO S, JAMES C, et al. Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO2[J]. Colloids and Surfaces B: Biointerfaces, 2018, 168: 201-210.
doi: S0927-7765(17)30852-4 pmid: 29276082 |
[25] |
MOHAMED A, ARDYANI T, BAKAR S A, et al. Effect of surfactant headgroup on low-fluorine-content CO2-philic hybrid surfactants[J]. The Journal of Supercritical Fluids, 2016, 116: 148-154.
doi: 10.1016/j.supflu.2016.04.018 |
[26] | 王占艳. 亲CO2表面活性剂的合成及其萃取性能研究[D]. 大连: 大连理工大学, 2018. |
WANG Zhanyan. Synthesis of CO2-philic surfactants and their extraction porperties in oil recovery and dry-cleaning[D]. Dalian: Dalian University of Technology, 2018. | |
[27] | 史清照. 增强油-scCO2相互作用的界面活性剂的研究[D]. 大连: 大连理工大学, 2017. |
SHI Qingzhao. The interfacial agents for enhancing oil-scCO2 interaction[D]. Dalian: Dalian University of Technology, 2017. | |
[28] | 郭平, 焦松杰, 陈馥, 等. 非离子低分子表面活性剂优选及驱油效率研究[J]. 石油钻采工艺, 2012, 34(2):81-84. |
GUO Ping, JIAO Songjie, CHEN Fu, et al. Optimization and oil displacement efficiency of non-ionic low molecular surfactant[J]. Oil Drilling & Production Technology, 2012, 34(2): 81-84. | |
[29] |
GUO P, HU Y S, QIN J S, et al. Use of oil-soluble surfactant to reduce minimum miscibility pressure[J]. Petroleum Science and Technology, 2017, 35(4): 345-350.
doi: 10.1080/10916466.2016.1259630 |
[30] |
赵跃军, 宋考平, 范广娟, 等. 酯类化合物降低原油与二氧化碳体系最小混相压力实验[J]. 石油学报, 2017, 38(9):1066-1072.
doi: 10.7623/syxb201709008 |
ZHAO Yuejun, SONG Kaoping, FAN Guangjuan, et al. The experiment for reducing the minimum miscible pressure of crude oil and carbon dioxide system with ester compounds[J]. Acta Petrolei Sinica, 2017, 38(9): 1066-1072.
doi: 10.7623/syxb201709008 |
|
[31] | 刘泽宇, 廖培龙, 马骋, 等. 一种便捷、可视化的CO2驱助混剂评价方法—高度上升法及其在油田化学中的应用[J]. 油田化学, 2020, 37(3):525-530. |
LIU Zeyu, LIAO Peilong, MA Cheng, et al. A convenient and visualized method to estimate CO2 miscible flooding assistant-rising height test and its applications in oilfield chemistry[J]. Oilfield Chemistry, 2020, 37(3): 525-530. | |
[32] |
SAGISAKA M, SAITO T, YOSHIZAWA A, et al. Water-in-CO2 microemulsions stabilized by fluorinated cation-anion surfactant pairs[J]. Langmuir, 2019, 35(9): 3445-3454.
doi: 10.1021/acs.langmuir.8b03942 |
[33] |
DONG Z X, LI Y, LIN M Q, et al. A study of the mechanism of enhancing oil recovery using supercritical carbon dioxide microemulsions[J]. Petroleum Science, 2013, 10(1): 91-96.
doi: 10.1007/s12182-013-0254-9 |
[34] | 董朝霞, 崔波, 李翼, 等. 超临界CO2微乳液与烷烃的最小混相压力研究[J]. 石油化工高等学校学报, 2013, 26(1):40-44. |
DONG Zhaoxia, CUI Bo, LI Yi, et al. MMP of supercritical carbon dioxide microemulsion and alkanes[J]. Journal of Petrochemical Universities, 2013, 26(1): 40-44. | |
[35] |
MOHAMED A, ARDYANI T, SAGISAKA M, et al. Economical and efficient hybrid surfactant with low fluorine content for the stabilisation of water-in-CO2 microemulsions[J]. The Journal of Supercritical Fluids, 2015, 98: 127-136.
doi: 10.1016/j.supflu.2015.01.012 |
[36] |
ZHANG C, LI Z M, LI S Y, et al. Enhancing sodium bis(2-ethylhexyl) sulfosuccinate injectivity for CO2 foam formation in low-permeability cores: dissolving in CO2 with ethanol[J]. Energy & Fuels, 2018, 32(5): 5846-5856.
doi: 10.1021/acs.energyfuels.8b00741 |
[37] |
SHI Q Z, CHENG J C, LIU Y, et al. Effects of non-ionic surfactants on the material exchange between crude oil and scCO2[J]. Journal of Molecular Liquids, 2018, 269: 23-28.
doi: 10.1016/j.molliq.2018.08.018 |
[38] |
DING M C, WANG Y F, WANG W, et al. Potential to enhance CO2 flooding in low permeability reservoirs by alcohol and surfactant as co-solvents[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106305.
doi: 10.1016/j.petrol.2019.106305 |
[39] | 王芳, 罗辉, 任玉飞, 等. 脂肪醇聚氧丙烯醚对CO2驱最小混相压力的影响[J]. 大庆石油地质与开发, 2016, 35(5):118-122. |
WANG Fang, LUO Hui, REN Yufei, et al. Influences of fatty alcohol polyoxypropylene ether on the minimum miscibility pressure of carbon dioxide flooding[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(5): 118-122. | |
[40] | 王芳, 罗辉, 范维玉, 等. 非离子表面活性剂分子结构对CO2驱混相压力的影响[J]. 油田化学, 2017, 34(2):270-273. |
WANG Fang, LUO Hui, FAN Weiyu, et al. Effect of the structure of nonionic surfactant on the miscibility pressure of CO2 flooding[J]. Oilfield Chemistry, 2017, 34(2): 270-273. | |
[41] |
YANG Z H, WU W, DONG Z X, et al. Reducing the minimum miscibility pressure of CO2 and crude oil using alcohols[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 105-112.
doi: 10.1016/j.colsurfa.2019.02.004 |
[42] |
ZHANG C, XI L H, WU P K, et al. A novel system for reducing CO2-crude oil minimum miscibility pressure with CO2-soluble surfactants[J]. Fuel, 2020, 281: 118690.
doi: 10.1016/j.fuel.2020.118690 |
[43] |
RAVEENDRAN P, WALLEN S L. Cooperative C-H···O hydrogen bonding in CO2-lewis base complexes: Implications for solvation in supercritical CO2[J]. Journal of the American Chemical Society, 2002, 124(42): 12590-12599.
doi: 10.1021/ja0174635 |
[44] | YANG Z H, YIN T H, ZHANG F F, et al. Investigation on dispersion properties of CO2 and ester solvent mixtures using in situ FTIR spectroscopy[J]. RSC Advances, 2020(10): 18192-18199. |
[45] |
SARBU T, STYRANEC T, BECKMAN E J. Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures[J]. Nature, 2000, 405(6783): 165-168.
doi: 10.1038/35012040 |
[46] |
KILIC S, MICHALIK S, WANG Y, et al. Effect of grafted lewis base groups on the phase behavior of model poly(dimethyl siloxanes) in CO2[J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6415-6424.
doi: 10.1021/ie030288b |
[47] |
STOYCHEV I, PETERS F, KLEINER M, et al. Phase behavior of poly(dimethylsiloxane)-poly(ethylene oxide) amphiphilic block and graft copolymers in compressed carbon dioxide[J]. The Journal of Supercritical Fluids, 2012, 62: 211-218.
doi: 10.1016/j.supflu.2011.11.008 |
[48] |
KILIC S, MICHALIK S, WANG Y, et al. Phase behavior of oxygen-containing polymers in CO2[J]. Macromolecules, 2007, 40(4): 1332-1341.
doi: 10.1021/ma061422h |
[49] |
AL HINAI N M, SAEEDI A, WOOD C D, et al. Experimental evaluations of polymeric solubility and thickeners for supercritical CO2 at high temperatures for enhanced oil recovery[J]. Energy & Fuels, 2018, 32(2): 1600-1611.
doi: 10.1021/acs.energyfuels.7b03733 |
[50] |
EASTOE J, YAN C, MOHAMED A. Microemulsions with CO2 as a solvent[J]. Current Opinion in Colloid & Interface Science, 2012, 17(5): 266-273.
doi: 10.1016/j.cocis.2012.06.006 |
[51] |
CZAJKA A, HILL C, PEACH J, et al. Trimethylsilyl hedgehogs: A novel class of super-efficient hydrocarbon surfactants[J]. Physical Chemistry Chemical Physics, 2017, 19(35): 23869-23877.
doi: 10.1039/C7CP02570J |
[52] |
ALEXANDER S, SMITH G N, JAMES C, et al. Low-surface energy surfactants with branched hydrocarbon architectures[J]. Langmuir, 2014, 30(12): 3413-3421.
doi: 10.1021/la500332s pmid: 24617649 |
[53] |
ZHANG Y F, ZHU Z W, BAI Z G, et al. Incorporating a silicon unit into a polyether backbone-an effective approach to enhance polyether solubility in CO2[J]. RSC Advances, 2017, 7(27): 16616-16622.
doi: 10.1039/C7RA01587A |
[54] | 徐凌霄. 新型亲CO2化合物的设计合成及其在超临界CO2中的溶解行为研究[D]. 武汉: 中南民族大学, 2013. |
XU Lingxiao. Design, synthesis of novel CO2-philic compound and investigation on their solubility behavior in supercritical CO2[D]. Wuhan: South-Central University for Nationalities, 2013. | |
[55] |
CHANG H H, YANG C C, LI X, et al. Ab initio analysis on the interaction of CO2 binding to peracetated D-glucopyranose[J]. Journal of Molecular Modeling, 2014, 20(6): 2259.
doi: 10.1007/s00894-014-2259-8 |
[56] |
RAVEENDRAN P, WALLEN S L. Sugar acetates as novel, renewable CO2-philes[J]. Journal of the American Chemical Society, 2002, 124(25): 7274-7275.
doi: 10.1021/ja025508b |
[57] | 何金美, 王英雄, 秦张峰, 等. 取代基对糖类衍生物亲二氧化碳性的影响[J]. 化工新型材料, 2016, 44(2):129-131. |
HE Jinmei, WANG Yingxiong, QIN Zhangfeng, et al. Influence of substituent on CO2-philicity dependence of Sugar derivatives[J]. New Chemical Materials, 2016, 44(2): 129-131. |
[1] | 王典林, 杨琼, 魏兵, 戢炳鑫, 辛军, 孙琳. 甜菜碱型表面活性剂结构对CO2泡沫液膜性质的影响 [J]. 油气藏评价与开发, 2023, 13(3): 313-321. |
[2] | 申鑫,郭建春,王世彬. 阳离子表面活性剂遮蔽作用导致的酸化缓速研究 [J]. 油气藏评价与开发, 2023, 13(1): 117-126. |
[3] | 王正欣,张连锋,杨璐,刘艳华,卢军,张卓. 适用于双河油田聚驱后油藏的非均相复合驱油体系研究 [J]. 油气藏评价与开发, 2020, 10(6): 78-84. |
[4] | 曹绪龙, 吕广忠, 王杰, 张东, 任敏. 胜利油田CO2驱油技术现状及下步研究方向 [J]. 油气藏评价与开发, 2020, 10(3): 51-59. |
[5] | 蒋永平. 苏北稠油油藏CO2复合吞吐用新型降黏剂合成及效果评价 [J]. 油气藏评价与开发, 2020, 10(3): 39-44. |
[6] | 杨光宇,汤勇,李兆国,张永强,余光明. 系线法研究CO2驱最小混相压力影响因素 [J]. 油气藏评价与开发, 2019, 9(3): 32-35. |
[7] | 王健,覃达,余恒,徐鹏,胡雨涵. 烟道气泡沫封堵参数优化及微观机理研究 [J]. 油气藏评价与开发, 2018, 8(6): 33-38. |
[8] | 汤勇,赵雪梅,汪洋. CO2驱最小混相压力影响因素研究 [J]. 油气藏评价与开发, 2018, 8(4): 42-45. |
|