油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (5): 711-725.doi: 10.13809/j.cnki.cn32-1825/te.2022.05.002
桑树勋1,2,3,4(),刘世奇1,2,陆诗建1,2,朱前林1,2,王猛1,2,3,韩思杰1,2,刘统1,2,郑司建1,2
收稿日期:
2022-04-21
发布日期:
2022-09-27
出版日期:
2022-10-26
作者简介:
桑树勋(1967—),男,博士,教授,从事碳中和地质技术、CCUS全流程技术相关研究。地址:江苏省徐州市泉山区金山东路1号中国矿业大学(文昌校区)碳中和研究院,邮政编码:221008。E-mail:基金资助:
SANG Shuxun1,2,3,4(),LIU Shiqi1,2,LU Shijian1,2,ZHU Qianlin1,2,WANG Meng1,2,3,HAN Sijie1,2,LIU Tong1,2,ZHENG Sijian1,2
Received:
2022-04-21
Online:
2022-09-27
Published:
2022-10-26
摘要:
集群化规模部署是CO2捕集、利用与封存(CCUS)去碳产业发展的必由之路,创新发展工程化CCUS全流程技术是实现中国CCUS去碳产业集群化规模部署的关键和紧迫需求,对中国能源安全保障和碳中和目标实现意义重大。基于调研和研究工作积累,阐释了工程化CCUS全流程技术的科学内涵,提出了工程化CCUS全流程技术的概念,归纳了该技术体系的基本模式、应用模式和技术关键组合模式,梳理了其技术科学流程;概述了工程化CCUS全流程技术的关键技术环节,探索揭示了CCUS全流程技术的形成机制;概要总结了国内外代表性CCUS全流程技术工程项目实例;讨论和前瞻了工程化CCUS全流程技术当前所面临的技术挑战及攻关方向。已有研究工作表明:工程化CCUS全流程技术以节能高效的CO2捕集、CO2化工生物与矿化固碳、CO2高效地质利用封存为关键环节和核心内涵,以CCUS源汇匹配、技术集成匹配和系统优化为形成关键机制;CCUS全流程技术模式复杂多样,其研发的技术科学流程由5个主要步骤构成;工程化CCUS全流程技术体系框架已经建立,研发和应用取得诸多进展,但中国与欧美发达国家在该领域仍有差距;加快CCUS集群化规模部署的工程示范、强化全流程形成机制等CCUS集群化规模部署技术科学基础研究、重点突破CO2捕集、地质封存等工程化CCUS全流程技术关键环节成为应对挑战的主要攻关方向。
中图分类号:
Shuxun SANG,Shiqi LIU,Shijian LU, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725.
[1] | 蔡博峰, 李琦, 张贤, 等. 中国CO2捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 北京: 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021. |
CAI Bofeng, LI Qi, ZHANG Xian, et al. China annual report on carbon dioxide capture, utilization, and storage (CCUS) (2021) ——Study on China's CCUS path[R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Center for China's Agenda 21, 2021. | |
[2] | 李阳, 赵清民, 薛兆杰. “双碳目标”下CCUS技术及产业化发展路径[J/OL]. 石油钻采工艺, 2022. https://kns.cnki.net/kcms/detail/13.1072.TE.20220225.1758.002.html. |
LI Yang, ZHAO Qingmin, XUE Zhaojie. CCUS technological and industrialization development path under the target of carbon peaking and carbon neutrality[J/OL]. Oil Drilling & Production Technology, 2022. https://kns.cnki.net/kcms/detail/13.1072.TE.20220225.1758.002.html. | |
[3] | 胡永乐, 郝明强. CCUS 产业发展特点及成本界限研究[J]. 油气藏评价与开发, 2020, 10(3):15-22. |
HU Yongle, HAO Mingqiang. Development characteristics and cost analysis of CCUS in China[J]. Reservoir Evaluation and Development, 2020, 10(3): 15-22. | |
[4] | IEA. Energy technology perspectives 2020: Special report on carbon capture, utilization and storage[R]. Paris: IEA, 2020. |
[5] | 全球能源互联网发展合作组织. 中国2030年前碳达峰研究报告[R/OL]. (2021-03-18)[2022-04-15]. https://www.geidco.org.cn/html/qqnyhlw/zt20210120_1/index.html. |
Global Energy Interconnection Development and Cooperation Organization. Research on China's carbon emission peak target for 2030[R/OL]. (2021-03-18)[2022-04-15]. https://www.geidco.org.cn/html/qqnyhlw/zt20210120_1/index.html. | |
[6] | GCCSI. Global status of CCS 2021[R/OL]. (2021-11-05)[2022-04-15]. https://www.globalccsinstitute.com/news-media/latest-news/media-coverage-the-global-status-of-ccs-2021. |
[7] | 蔡博峰, 李琦, 林千果, 等. 中国CO2捕集、利用与封存(CCUS)报告(2019)[R]. 北京: 生态环境部环境规划院气候变化与环境政策研究中心, 2020. |
CAI Bofeng, LI Qi, LIN Qianguo, et al. China annual report on carbon dioxide capture, utilization, and storage (CCUS) (2019)[R]. Beijing: Center for Climate Change and Environmental Policy, Chinese Academy for Environmental Planning, 2020. | |
[8] | 桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022, 47(4):1430-1451. |
SANG Shuxun, YUAN Liang, LIU Shiqi, et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society 2022, 47(4): 1430-1451. | |
[9] | ZHANG L Y, SUN N N, WANG M Q, et al. The integration of hydrogenation and carbon capture utilization and storage technology: A potential low-carbon approach to chemical synthesis in China[J]. International Journal of Energy Research, 2021, 45(14): 19789-19818. |
[10] | 聂立功. 气候目标下中国煤基能源与CCUS技术的耦合性研究[J]. 中国煤炭, 2017, 43(10):10-14. |
NIE Ligong. Study on coupling of coal-based energy and CCUS technology in China under climate target[J]. China Coal, 2017, 43(10): 10-14. | |
[11] | YANG W, PENG B, WU M Z, et al. Evaluation for CO2 geo-storage potential and suitability in Dagang oilfield[J]. Energy Procedia, 2016, 86: 41-46. |
[12] | 朱前林, 范智涵, 王闯, 等. CO2封存泄漏大气扩散规律及监测方案—以延长油田CO2-EOR工程为例[J]. 安全与环境学报, 2018, 18(4):1432-1439. |
ZHU Qianlin, FAN Zhihan, WANG Chuang, et al. Dispersion features of the atmospheric monitoring program for CO2 leakage——A case study sample of the CO2-EOR pilot project of Yanchang Oil Field[J]. Journal of Safety and Environment, 2018, 18(4): 1432-1439. | |
[13] | 陆诗建. 碳捕集利用与封存技术[M]. 北京: 中国石化出版社, 2020. |
LU Shijian. Carbon capture, utilization and storage technology[M]. Beijing: China Petrochemical Press, 2020. | |
[14] | 陆诗建, 耿春香, 李世霞, 等. 燃煤电厂烟气CO2捕集双相吸收体系研究进展[J]. 天然气化工(C1化学与化工), 2018, 43(1):115-120. |
LU Shijian, GENG Chunxiang, LI Shixia, et al. Research progress of dual-phase absorption system for CO2 capture of flue gas in coal-fired power[J]. Natural Gas Chemical Industry, 2018, 43(1): 115-120. | |
[15] | 陆诗建, 方梦祥, 陈浮, 等. AEP-DPA-CuO相变纳米流体捕集烟气中CO2[J]. 化工环保, 2021, 41(6):724-730. |
LU Shijian, FANG Mengxiang, CHEN Fu, et al. Capture of CO2 in flue gas by AEP-DPA-CuO phase change nanofluid[J]. Environmental Protection of Chemical Industry, 2021, 41(6): 724-730. | |
[16] | ALEIXO M, PRIGENT M, GIBERT A, et al. Physical and chemical properties of DMXTM solvents[J]. Energy Procedia, 2011, 4: 148-155. |
[17] | 徐志成, 王淑娟, 陈昌和. 液液两相吸收剂吸收CO2的实验研究[J]. 清华大学学报(自然科学版), 2013,(3):9-23. |
XU Zhicheng, WANG Shujuan, CHEN Changhe. Experimental study of CO2absorption by liquid-liquid biphasic solvents[J]. Journal of Tsinghua University (Science and Technology), 2013, (3): 9-23. | |
[18] | IGLAUER S. Optimum storage depths for structural CO2 trapping[J]. International Journal of Greenhouse Gas Control, 2018, 77: 82-87. |
[19] | ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geo-sequestration[J]. Journal of CO2 Utilization, 2018, 28: 408-418. |
[20] | KIVIOR T, KALDI J G, LANG S C. Seal potential in cretaceous and late Jurassic rocks of the vulcan sub-basin, North West Shelf Australia[J]. The APPEA Journal, 2002, 42(1): 203-224. |
[21] | Working Group Ⅲ of the Intergovernmental Panel on Climate Change. IPCC special report on carbon dioxide capture and storage[M]. New York: Cambridge University Press, 2005. |
[22] | 桑树勋, 刘世奇, 王文峰, 等. 深部煤层CO2地质储存与煤层气强化开发有效性理论及评价[M]. 北京: 科学出版社, 2020. |
SANG Shuxun, LIU Shiqi, WANG Wenfeng, et al. Coalbed methane in deep coal seam geological storage of CO2 and theories of strengthening development effectiveness and evaluation[M]. Beijing: Science Press, 2020. | |
[23] | LIU S Q, FANG H H, SANG S X, et al. CO2 injectability and CH4 recovery of the engineering test in Qinshui Basin, China, based on numerical simulation[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102980. |
[24] | HOSSEINI BOOSARI S S, AYBAR U, ESHKALAK M O. Carbon dioxide storage and sequestration in unconventional shale reservoirs[J]. Journal of Geoscience and Environment Protection, 2015, 3(1): 7-15. |
[25] | OTHMAN F, NAUFALIANSYAH M A, HUSSAIN F. Effect of water salinity on permeability alteration during CO2 sequestration[J]. Advances in Water Resources, 2019, 127: 237-251. |
[26] | HAN J, LEE M, LEE W, et al. Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding[J]. Applied Energy, 2016, 161: 85-91. |
[27] | AMPOMAH W, BALCH R, CATHER M, et al. Evaluation of CO2 storage mechanisms in CO2 enhanced oil recovery sites: application to morrow sandstone reservoir[J]. Energy & Fuels, 2016, 30(10): 8545-8555. |
[28] | LI S, QIAO C, ZHANG C, et al. Determination of diffusion coefficients of supercritical CO2 under tight oil reservoir conditions with pressure-decay method[J]. Journal of CO2 Utilization, 2018, 24: 430-443. |
[29] | VILARRASA V, SILVA O, CARRERA J, et al. Liquid CO2 injection for geological storage in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2013, 14: 84-96. |
[30] | 何应付, 赵淑霞, 伦增珉, 等. 液态CO2流变特性与滤失性能分析[J]. 钻采工艺, 2020, 43(3):38-41. |
HE Yingfu, ZHAO Shuxia, LUN Zengmin, et al. Analysis of rheological and filtration properties of supercritical CO2[J]. Drilling & Production Technology, 2020, 43(3): 38-41. | |
[31] | DAI Z, VISWANATHAN H, MIDDLETON R, et al. CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites[J]. Environmental Science & Technology, 2016, 50(14): 7546-7554. |
[32] | INDU S T, MANISH K, SUNITA J V, et al. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges[J]. Bioresource Technology, 2018, 256: 478-490. |
[33] | 杨晋平, 段星, 施福富. 新型固碳工艺思路及技术研究[J]. 煤化工, 2021, 49(1):4-8. |
YANG Jinping, DUAN Xing, SHI Fufu. Research on new carbon sequestration technology[J]. Coal Chemical Industry, 2021, 49(1): 4-8. | |
[34] | 刘强, 丁杰, 纪国敬, 等. Fe-Co-K/ZrO2催化CO2加氢制低碳烯烃[J]. 无机材料学报, 2021, 36(10):1053-1061. |
LIU Qiang, DING Jie, JI Guojing, et al. Fe-Co-K/ZrO2 catalytic performance of CO2 hydrogenation to light olefins[J]. Journal of Inorganic Materials, 2021, 36(10): 1053-1061. | |
[35] | 刘超恒, 郭晓明, 钟成林, 等. 负载型CuO/TiO2催化剂催化CO2加氢制甲醇[J]. 无机化学学报, 2016, 32(8):1405-1412. |
LIU Chaoheng, GUO Xiaoming, ZHONG Chenglin, et al. Methanol synthesis from CO2 hydrogenation over supported CuO/TiO2 catalysts[J]. Journal of Inorganic Materials, 2016, 32(8): 1405-1412. | |
[36] | WANG H H, ZHANG S N, ZHAO T J, et al. Mild and selective hydrogenation of CO2 into formic acid over electron-rich MoC nanocatalysts[J]. Science Bulletin, 2020, 65(8): 651-657. |
[37] | 柳娜, 赵丹丹, 雷艳艳, 等. 纳米Al2O3负载Ru催化剂用于CO2加氢合成甲酸研究[J]. 化学工程, 2014, 42(12):55-58. |
LIU Na, ZHAO Dandan, LEI Yanyan, et al. Ru supported on nano-alumina for CO2 hydrogenation to formic acid[J]. Chemical Engineering (China), 2014, 42(12): 55-58. | |
[38] | 陈丹艳, 杨振超, 孔政, 等. 固碳方法比较研究及利弊分析[J]. 北方农业学报, 2017, 45(3):79-85. |
CHEN Danyan, YANG Zhenchao, KONG Zheng, et al. Comparative study and analysis of advantages and disadvantages of carbon sequestration methods[J]. Journal of Northern Agriculture, 2017, 45(3): 79-85. | |
[39] | 胡小夫, 王凯亮, 沈建永, 等. 基于生物固碳技术的CO2资源化利用研究进展[J]. 华电技术, 2021, 43(6):79-85. |
HU Xiaofu, WANG Kailiang, SHEN Jianyong, et al. Research progress of CO2 resource utilization based on biological carbon sequestration technology[J]. Integrated Intelligent Energy, 2021, 43(6): 79-85. | |
[40] | 郭禹曼, 洪学明, 樊彬, 等. 光催化-微生物耦合固碳研究进展[J/OL]. 生物加工过程, 2022. https://kns.cnki.net/kcms/detail/32.1706.Q.20220301.1122.002.html. |
GUO Yuman, HONG Xueming, FAN Bin, et al. Recent development of photocatalytic-biological hybrid systems for CO2 assimilation[J/OL]. Chinese Journal of Bioprocess Engineering, 2022. https://kns.cnki.net/kcms/detail/32.1706.Q.20220301.1122.002.html. | |
[41] | BOUZON M, PERRET A, LOREAU O, et al. A synthetic alternative to canonical one-carbon metabolism[J]. ACS Synthetic Biology, 2017, 6(8): 1520-1533. |
[42] | MEYER F, KELLER P, HARTL J, et al. Methanol-essential growth of Escherichia coli[J]. Nature Communications, 2018, 9(1): 1508. |
[43] | 彭巨光, 麦荣军, 张岍, 等. 生物固碳技术在丁山河河道低碳治理项目中的应用[J]. 建筑经济, 2014, 35(2):77-80. |
PENG Juguang, MAI Rongjun, ZHANG Yan, et al. Application of biological carbon sequestration technology in Dingshan River low carbon treatment project[J]. Construction Economy, 2014, 35(2): 77-80. | |
[44] | 周文广, 阮榕生. 微藻生物固碳技术进展和发展趋势[J]. 中国科学, 2014, 44(1):63-78. |
ZHOU Wenguang, RUAN Rongsheng. Progress and development trend of microalgae biological carbon sequestration technology[J]. Scientia Sinica (Chimica), 2014, 44(1): 63-78. | |
[45] | 孙一夫, 李凤军, 何文, 等. CO2矿化养护加气混凝土试验研究[J]. 洁净煤技术, 2021, 27(2):237-245. |
SUN Yifu, LI Fengjun, HE Wen, et al. Investigation on CO2 mineralization curing of aerated concretes[J]. Clean Coal Technology, 2021, 27(2): 237-245. | |
[46] | 王建行, 赵颖颖, 李佳慧, 等. CO2的捕集、固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4):12-17. |
WANG Jianxing, ZHAO Yingying, LI Jiahui, et al. Research progress of carbon dioxide capture,fixation and utilization[J]. Inorganic Chemicals Industry, 2020, 52(4): 12-17. | |
[47] | 张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程学报, 2021, 15(7):2344-2355. |
ZHANG Yapeng, CUI Longpeng, LIU Yanfang, et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2344-2355. | |
[48] | 任国宏, 廖洪强, 高宏宇, 等. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21):3556-3560. |
REN Guohong, MIAO Hongqiang, GAO Hongyu, et al. Carbon dioxide-fixing and compression strength enhancing characteristics of mineralized immobilization of fly ash-calcium carbide slag slurry[J]. Materials Reports, 2019, 33(21): 3556-3560. | |
[49] | 黄艳, 周康, 王诚, 等. 废弃混凝土碳酸化再生利用技术进展[J]. 能源工程, 2022, 42(1):34-43. |
HUANG Yan, ZHOU Kang, WANG Cheng, et al. Recent study on carbonation recycling of waste concrete technology[J]. Energy Engineering, 2022, 42(1): 34-43. | |
[50] | 马卓慧, 廖洪强, 程芳琴, 等. 粉煤灰提铝硅钙渣矿化固定CO2[J]. 硅酸盐通报, 2020, 39(4):1224-1229. |
MA Zhuohui, MIAO Hongqiang, CHENG Fangqin, et al. CO2 Sequestration by mineralization of silica calcium slag generated in process of extracting alumina from fly ash[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1224-1229. | |
[51] | 宋佳奕, 李严, 何文, 等. 基于复合胶凝材料的CO2矿化养护实验研究[J]. 能源工程, 2021, 41(3): 31-38. |
SONG Jiayi, LI Yan, HE Wen, et al. Experimental study on carbonation curing based on composite cementitious materials[J]. Energy Engineering, 2021, 41(3): 31-38. | |
[52] | HOOVER B, YAW S, MIDDLETON R. Cost MAP: An open-source software package for developing cost surfaces using a multi-scale search kernel[J]. International Journal of Geographical Information Science, 2020, 34(3): 520-538. |
[53] | BRUNSVOLD A, JAKOBSEN J P, HUSEBYE J, et al. Case studies on CO2 transport infrastructure: optimization of pipeline network, effect of ownership, and political incentives[J]. Energy Procedia, 2011, 4: 3024-3031. |
[54] | EGBERTS P, KEPPEL J F, WILDENBORG A. A decision support system for underground CO2 sequestration[C]// Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan: Pergamon, 2003, 651-655. |
[55] | NEELE F, HENDRIKS C, BRANDSMA R. DSS and economic evaluations, SESS-518318 D30[R]. Utrecht: EU Geo Capacity. 2009. |
[56] | MIDDLETON R S, BIELICKI J M. A scalable infrastructure model for carbon capture and storage: SimCCS[J]. Energy Policy, 2009, 37(3):1052-1060. |
[57] | MORBEE J, SERPA J, TZIMAS E. Optimal planning of CO2 transmission infrastructure: The JRC InfraCCS tool[J]. Energy Procedia, 2011, 4(1): 2772-2777. |
[58] | BROEK M, BREDERODE E, RAMÍREZ A, et al. An integrated GIS-MARKAL toolbox for designing a CO2 infrastructure network in the Netherlands[J]. Energy Procedia, 2009, 1(1): 4071-4078. |
[59] | 郑重. CCS源汇匹配与早期示范研究[D]. 北京: 清华大学, 2008. |
ZHENG Zhong. CCS source-sink matching and early demonstration study[D]. Beijing: Tsinghua University, 2008. | |
[60] | 黄灵燕. 基于GIS的CCS源汇匹配模型和决策支持系统[D]. 北京: 清华大学, 2009. |
HUANG Lingyan. CCS source-sink matching model and decision support system based on GIS[D]. Beijing: Tsinghua University, 2009. | |
[61] | CHEN W Y, HUANG L Y, XIANG X, et al. GIS based CCS source-sink matching models and decision support system[J]. Energy Procedia, 2011, 4(1): 5999-6006. |
[62] | WEI Y M, KANG J N, LIU L C, et al. A proposed global layout of carbon capture and storage in line with a 2 °C climate target[J]. Nature Climate Change, 2021, 11: 112-118. |
[63] | FAN J L, XU M, WEI S J, et al. Carbon reduction potential of Chin’s coal-fired power plants based on a CCUS source-sink matching model[J]. Resources, Conservation and Recycling, 2021, 168: 105320. |
[64] | HASAN M, FIRST E L, BOUKOUVALA F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCUM[J]. Computers & Chemical Engineering, 2015, 81: 2-21. |
[65] | 师志成, 赵珊珊, 张永学, 等. 工业用能过程碳捕集与封存技术发展研究[J]. 天然气与石油, 2021, 39(5):28-37. |
SHI Zhicheng, ZHAO Shanshan, ZHANG Yongxue, et al. Research on the development of carbon capture and storage (CCS) technology in industrial energy utilization process[J]. Natural Gas and Oil, 2021, 39(5): 28-37. | |
[66] | TAPIA J, LEE J Y, OOI R, et al. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems[J]. Sustainable Production & Consumption, 2018, 13: 1-15. |
[67] | 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6):70-80. |
ZHANG Xian, LI Yang, MA Qiao, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 23(6): 70-80. | |
[68] | VAN OS P, KVAMSDAL H M, HAUGEN H A, et al. ALIGN-CCUS: The results of an ACT project on the full CCUS chain to accelerate implementation of decarbonisation in industrial areas[C]// Paper presented at the 15th Greenhouse Gas Control Technologies Conference, New York, USA, April 2021. |
[69] | SENATORE V, BUONERBA A, ZARRA T, et al. Innovative membrane photobioreactor for sustainable CO2 capture and utilization[J]. Chemosphere, 2021, 273(7): 129682. |
[70] | 翟明洋. CO2捕集、利用与封存全流程系统优化模型的开发及应用[D]. 北京: 华北电力大学, 2018. |
ZHAI Mingyang. Development and application of a full-chain carbon capture, utilization and storage system optimization model[D]. Beijing: North China Electric Power University, 2018. | |
[71] | LEONZIO G, FOSCOLO P U, Zondervan E, et al. Scenario analysis of carbon capture, utilization (particularly producing methane and methanol), and storage (CCUS) systems[J]. Industrial and Engineering Chemistry Research, 2020, 59(15): 6961-6976. |
[72] | DIAMANTE J, TAN R R, FOO D, et al. Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions[J]. Journal of Cleaner Production, 2014, 71: 67-74. |
[73] | SUN L, CHEN W Y. The improved China CCS decision support system: A case study for Beijing-Tianjin-Hebei Region of China[J]. Applied Energy, 2013, 112: 793-799. |
[74] | 钟林发, 林千果, 王香增, 等. 碳捕集与封存-提高石油采收率全流程经济性评价模型[J]. 现代化工, 2016, 36(11):7-10. |
ZHONG Linfa, LIN Qianguo, WANG Xiangzeng, et al. Economic evaluation of carbon capture and storage enhanced oil recovery[J]. Modern Chemical Industry, 2016, 36(11): 7-10. | |
[75] | SUN L, CHEN W Y. Development and application of a multi-stage CCUS source-sink matching model[J]. Applied Energy, 2017, 185: 1424-1432. |
[76] | D'AMORE F, MOCELLIN P, VIANELLO C, et al. Economic optimization of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures[J]. Applied Energy, 2018, 223: 401-415. |
[77] | 刘胜男, 魏宁, 肖敦峰, 等. 蒙古国SNG项目全流程CCUS预可行性研究[J]. 中国电机工程学报, 2021, 41(4):1258-1266. |
LIU Shengnan, WEI Ning, XIAO Dunfeng, et al. Pre-feasibility study of full-chain CCUS in Mogolia synthesis gas project[J]. Proceedings of the CSEE, 2021, 41(4): 1258-1266. | |
[78] | ZHANG S, LIU L L, ZHANG L, et al. An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China[J]. Applied Energy, 2018, 231: 194-206. |
[79] | NGUYEN T, LEONZIO G, ZONDERVAN E. Supply chain optimization framework for CO2 capture, utilization, and storage in Germany[J]. Physical Sciences Reviews, 2021: 20200054. |
[80] | PETER M, GEORG W, SANDRA S, et al. ALIGN-CCUS: Results of the 18-month test with aqueous AMP/PZ solvent at the pilot plant at Niederaussem-solvent management, emissions and dynamic behavior[C]// Paper presented at the 15th International Conference on Greenhouse Gas Control Technologies, Abu Dhabi, UAE, October 2020. |
[81] | PRESTON C, BRUCE C, MONEA M. An update on the integrated CCS project at SaskPower's Boundary Dam Power Station[C]// Paper presented at the 14th Greenhouse Gas Control Technologies Conference, Melbourne, Australia, October 2018. |
[82] | 中国石油化工集团有限公司. 中国石化启动我国首个百万吨级CCUS项目[EB/OL]. (2021-07-05)[2022-04-15]. http://www.sinopecgroup.com/group/xwzx/gsyw/20210706/news_20210706_519272414965.shtml. |
China Petrochemical Corporation LTD. The China Petrochemical Corporation LTD launches the first one million ton CCUS project of China[EB/OL]. (2021-07-05)[2022-04-15]. http://www.sinopecgroup.com/group/xwzx/gsyw/20210706/news_20210706_519272414965.shtml. | |
[83] | 宋珂琛, 崔希利, 邢华斌. CO2直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3):1152-1162. |
SONG Kechen, CUI Xili, XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162. | |
[84] | GAO W L, LIANG S Y, WANG R J, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
[1] | 张益, 宁崇如, 陈亚舟, 姬玉龙, 赵立阳, 王爱方, 黄晶晶, 于凯怡. 致密油藏大排量注水吞吐技术及参数优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 727-733. |
[2] | 廖凯, 张士诚, 谢勃勃. 页岩油体积压裂后合理焖井时间模拟研究 [J]. 油气藏评价与开发, 2024, 14(5): 749-755. |
[3] | 刘绪钢, 李国锋, 李雷, 王锐霞, 方彦明. 页岩油储层压裂液渗吸驱油机理研究 [J]. 油气藏评价与开发, 2024, 14(5): 756-763. |
[4] | 曹小朋, 刘海成, 李忠新, 陈先超, 江朋宇, 樊浩. 基于EDFM的页岩油水平井注水吞吐优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 734-740. |
[5] | 何发岐, 李俊鹿, 高一龙, 吴锦伟, 白兴盈, 高盾. 鄂尔多斯盆地西南缘断缝体油藏开发特征与潜力 [J]. 油气藏评价与开发, 2024, 14(5): 667-677. |
[6] | 高玉巧, 何希鹏, 程熊, 唐玄, 花彩霞, 昝灵, 张培先, 陈学武, 庞伊伟. 陆相咸化湖盆“低TOC”烃源岩高生烃效率探讨——以苏北盆地溱潼凹陷阜宁组二段泥页岩为例 [J]. 油气藏评价与开发, 2024, 14(5): 678-687. |
[7] | 束青林,魏超平,于田田,计秉玉,张仲平,郑万刚. 稠油开发技术进展及新分类标准建立与应用实践——以胜利油田稠油开发为例 [J]. 油气藏评价与开发, 2024, 14(4): 529-540. |
[8] | 陈祥, 王冠, 刘平礼, 杜娟, 王铭, 陈伟华, 李金龙, 刘金明, 刘飞. 四川盆地灯影组酸压裂缝导流能力实验和模拟研究 [J]. 油气藏评价与开发, 2024, 14(4): 569-576. |
[9] | 李中超, 齐桂雪, 罗波波, 许寻, 陈华. 深层低渗凝析气藏气驱适应性研究 [J]. 油气藏评价与开发, 2024, 14(3): 324-332. |
[10] | 段宏亮,谌廷姗,孙敬,洪亚飞,李思辰,卢显荣,张正阳. 苏北盆地页岩油基质与裂缝流动能力实验研究 [J]. 油气藏评价与开发, 2024, 14(3): 333-342. |
[11] | 孔祥伟,许洪星,时贤,陈杭. 致密砂岩气藏暂堵压裂裂缝起裂扩展实验模拟 [J]. 油气藏评价与开发, 2024, 14(3): 391-401. |
[12] | 郑懿琼, 张涛, 刘海英, 阮聪慧, 邹帅. 近废型稠油油藏火驱效益开发新思路 [J]. 油气藏评价与开发, 2024, 14(3): 504-509. |
[13] | 刘晓. 不同压裂规模下煤储层缝网形态对比研究——以延川南煤层气田为例 [J]. 油气藏评价与开发, 2024, 14(3): 510-518. |
[14] | 李宁,苗贺,曹开芳. 基于叠前方位各向异性的火山岩裂缝预测——以松辽盆地南部LFS地区为例 [J]. 油气藏评价与开发, 2024, 14(2): 197-206. |
[15] | 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识 [J]. 油气藏评价与开发, 2024, 14(2): 256-266. |
|