油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (5): 748-753.doi: 10.13809/j.cnki.cn32-1825/te.2022.05.006
收稿日期:
2022-04-29
出版日期:
2022-10-26
发布日期:
2022-09-27
通讯作者:
赵秋霞
E-mail:panyiswpu@126.com;2698039544@qq.com
作者简介:
潘毅(1982—),男,博士,副教授,从事油气藏流体相态、注气提高采收率研究。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: 基金资助:
PAN Yi(),ZHAO Qiuxia(),SUN Lei,LIU Jiang,WANG Tao,GUO Deming
Received:
2022-04-29
Online:
2022-10-26
Published:
2022-09-27
Contact:
ZHAO Qiuxia
E-mail:panyiswpu@126.com;2698039544@qq.com
摘要:
在分析CO2驱最小混相压力影响因素及36组细管实验数据的基础上,运用灰色关联法计算了各因素对原油CO2驱最小混相压力影响的关联度,并利用MATLAB(矩阵实验室)软件回归拟合了关于油藏温度、C5+相对分子质量、挥发烃组分(N2+CH4)摩尔分数和中间烃组分(CO2+H2S+C2—C4)摩尔分数的原油CO2驱最小混相压力预测模型,拟合的相关系数达0.900 9。并选用某油田3口井油样最小混相压力细管实验测试的数据进行检验,建立的新预测模型计算误差平均值为3.57 %,能够用于指导油藏现场开发。
中图分类号:
潘毅,赵秋霞,孙雷,刘江,汪涛,郭德明. CO2驱最小混相压力预测模型研究[J]. 油气藏评价与开发, 2022, 12(5): 748-753.
PAN Yi,ZHAO Qiuxia,SUN Lei,LIU Jiang,WANG Tao,GUO Deming. Prediction model of minimum miscible pressure in CO2 flooding[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 748-753.
表1
最小混相压力影响因素数据[17⇓⇓⇓⇓-22]"
序号 | t(℃) | MC5+ | MC7+ | Xvol(%) | Xint(%) | XC2—C4(%) | XC2—C6(%) | MMP(MPa) |
---|---|---|---|---|---|---|---|---|
1 | 96.60 | 217.00 | 224.00 | 0.04 | 7.39 | 6.99 | 10.96 | 26.62 |
2 | 103.00 | 222.30 | 233.10 | 0.08 | 4.45 | 3.95 | 9.89 | 29.23 |
3 | 110.00 | 262.40 | 269.70 | 0.10 | 1.05 | 1.05 | 4.37 | 29.34 |
4 | 84.00 | 202.90 | 208.40 | 0.18 | 2.18 | 0.85 | 5.85 | 22.11 |
5 | 107.00 | 284.50 | 320.60 | 0.18 | 10.02 | 8.67 | 13.30 | 29.54 |
6 | 101.60 | 301.00 | 310.00 | 1.77 | 4.35 | 3.72 | 7.19 | 31.30 |
7 | 99.00 | 254.00 | 265.00 | 1.97 | 11.78 | 11.44 | 15.39 | 22.30 |
8 | 108.00 | 283.00 | 293.00 | 2.13 | 6.80 | 6.32 | 9.52 | 27.90 |
9 | 101.00 | 265.00 | 275.00 | 0.48 | 13.64 | 6.47 | 9.95 | 24.10 |
10 | 66.00 | 380.00 | 391.00 | 1.63 | 11.84 | 11.46 | 13.37 | 20.00 |
11 | 106.00 | 224.00 | 233.00 | 2.34 | 6.20 | 7.04 | 10.69 | 26.00 |
12 | 42.80 | 204.00 | 222.00 | 17.00 | 26.31 | 25.31 | 28.80 | 10.69 |
13 | 32.20 | 188.00 | 206.00 | 11.00 | 16.24 | 15.26 | 25.00 | 7.58 |
14 | 110.00 | 181.00 | 185.00 | 33.00 | 32.15 | 30.12 | 36.00 | 20.20 |
15 | 71.10 | 221.00 | 227.00 | 41.00 | 6.84 | 6.25 | 7.00 | 23.44 |
16 | 102.20 | 205.00 | 210.00 | 51.00 | 7.56 | 6.99 | 10.00 | 28.17 |
17 | 67.80 | 204.00 | 210.00 | 31.00 | 22.15 | 21.30 | 23.00 | 16.89 |
18 | 112.20 | 214.00 | 220.00 | 33.00 | 18.26 | 16.23 | 28.00 | 24.15 |
19 | 80.00 | 241.00 | 245.00 | 53.00 | 8.12 | 2.36 | 9.00 | 26.75 |
20 | 31.10 | 205.00 | 240.00 | 12.00 | 19.45 | 15.23 | 24.20 | 8.10 |
21 | 73.30 | 210.00 | 218.00 | 49.00 | 6.89 | 6.25 | 8.84 | 24.13 |
22 | 40.00 | 202.00 | 221.00 | 24.00 | 25.46 | 23.54 | 30.70 | 9.07 |
23 | 54.40 | 169.00 | 190.00 | 30.00 | 30.14 | 28.46 | 37.30 | 11.78 |
24 | 48.90 | 214.00 | 227.00 | 16.00 | 25.16 | 24.13 | 31.00 | 10.58 |
25 | 40.00 | 191.00 | 205.00 | 9.30 | 21.05 | 14.26 | 31.00 | 8.78 |
26 | 78.90 | 265.02 | 279.88 | 31.68 | 22.15 | 4.62 | 5.81 | 23.11 |
27 | 112.00 | 274.16 | 280.25 | 17.28 | 15.26 | 8.26 | 10.62 | 25.21 |
28 | 43.60 | 230.76 | 265.48 | 8.73 | 9.23 | 5.43 | 7.31 | 13.56 |
29 | 97.00 | 213.20 | 225.40 | 9.97 | 14.23 | 5.12 | 6.88 | 19.96 |
30 | 68.00 | 203.12 | 214.83 | 14.89 | 6.25 | 3.15 | 7.73 | 17.29 |
31 | 103.30 | 195.04 | 202.69 | 45.29 | 28.47 | 16.24 | 20.15 | 22.70 |
32 | 80.00 | 168.23 | 197.00 | 13.00 | 45.50 | 13.24 | 14.12 | 23.45 |
33 | 121.10 | 241.00 | 245.38 | 26.58 | 30.25 | 7.45 | 8.56 | 23.60 |
34 | 72.90 | 214.00 | 220.98 | 55.18 | 10.39 | 3.21 | 4.26 | 40.50 |
35 | 120.80 | 302.15 | 319.00 | 30.67 | 18.89 | 6.58 | 10.24 | 41.15 |
36 | 92.60 | 187.64 | 198.00 | 57.13 | 24.23 | 7.16 | 9.95 | 34.20 |
[1] | 苏坤, 廖新维, 赵晓亮, 等. 基于遗传算法的CO2驱最小混相压力预测[J]. 科学技术与工程, 2013, 13(16):4524-4528. |
SU Kun, LIAO Xinwei, ZHAO Xiaoliang, et al. Prediction of minimum miscible Pressure in CO2 Flooding based on Genetic Algorithm[J]. Science Technology and Engineering, 2013, 13(16): 4524-4528. | |
[2] | 谭光天. 注烃混相驱提高石油采收率机理及其在葡北油田应用研究[D]. 成都: 西南石油学院, 2005. |
TAN Guangtian. Mechanism of hydrocarbon injection miscible flooding and its application in Pubei Oilfield[D]. Chengdu: Southwest Petroleum Institute, 2005. | |
[3] | TEKLU T W, GHEDAN S G, GRAVES R M, et al. Minimum miscibility pressure determination: modified multiple mixing cell method[C]// Paper SPE-155454-MS presented at the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, April 2012. |
[4] | SHOKIR E M EL-M. CO2-oil minimum miscibility pressure model for impure and pure CO2 streams[J]. Journal of Petroleum Science and Engineering, 2006, 58(6): 176-185. |
[5] |
李孟涛, 单文文, 刘先贵, 等. 超临界二氧化碳混相驱油机理实验研究[J]. 石油学报, 2006, 27(3):80-83.
doi: 10.7623/syxb200603017 |
LI Mengtao, SHAN Wenwen, LIU Xiangui, et al. Experimental study of supercritical carbon dioxide miscible flooding Mechanism[J]. Acta Petrolei Sinica, 2006, 27(3): 80-83.
doi: 10.7623/syxb200603017 |
|
[6] | AMAO A M, SIDDIQUI S, MENOUAR H, et al. A new look at the minimum miscibility pressure(MMP)determination fromslim tube measurements[C]// Paper SPE-153383-MS presented at the SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, April 2012. |
[7] | WANG Y, FRANKLIN M O JR. Calculation of minimum miscibility pressure[C]// Paper SPE-39683-MS presented at the SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, April 1998. |
[8] | SRIVASTAVA R K, HUANG S S. New interpretation technique for determining minimum miscibility pressure by rising bubble apparatus for enriched-gas drives[C]// Paper SPE-39566-MS presented at the SPE India Oil and Gas Conference and Exhibition, New Delhi, India, February 1998. |
[9] | HARMON R A, GRIGG R B. Vapor-density measurement for estimating minimum miscibility pressure[J]. SPE Reservoir Evaluation & Engineering, 1988, 3(4): 1215-1220. |
[10] |
JESSEN K, FRANKLIN M O JR. On interfacial-tension measurements to estimate minimum miscibility pressures[J]. SPE Reservoir Evaluation and Engineering, 2008, 11(5): 933-939.
doi: 10.2118/110725-PA |
[11] | 姚健. CO2-原油最小混相压力实验测定及模型研究[D]. 成都: 西南石油大学, 2019. |
YAO Jian. Experimental determination and modeling of minimum miscibility pressure of CO2-crude oil[D]. Chengdu: Southwest Petroleum University, 2019. | |
[12] |
HOLM L W, JOSENDAL V A. Effect of oil composition on miscible-type displacement by carbon dioxide[J]. Society of Petroleum Engineers Journal, 1982, 22(1): 87-98.
doi: 10.2118/8814-PA |
[13] | 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1):72-76. |
TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research of the effect of CO2 injection on porous media and fluid property in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76. | |
[14] | 李媛, 刘世常, 张寅晖. H2S与CO2共存条件下气田地面集输系统内腐蚀影响因素分析方法研究[J]. 石油与天然气化工, 2020, 49(1):82-86. |
LI Yuan, LIU Shichang, ZHANG Yinhui. Study on analysis method of internal corrosion affecting factor under the coexistence of CO2 and H2S in surface gathering system[J]. Chemical Engineering of Oil and Gas, 2020, 49(1): 82-86. | |
[15] | 曹蕾, 汤文芝. CO2混相压裂技术在G区块的应用[J]. 石油与天然气化工, 2020, 49(2):69-72. |
CAO Lei, TANG Wenzhi. Application of carbon dioxide miscible fracturing technology in block G[J]. Chemical Engineering of Oil and Gas, 2020, 49(2): 69-72. | |
[16] | 郑永旺. 苏北低渗油藏CO2驱最小混相压力计算方法研究[J]. 石油地质与工程, 2017, 31(2):101-104. |
ZHENG Yongwang. Calculation method of minimum miscible pressure in CO2 flooding of low permeability reservoirs in Northern Jiangsu[J]. Petroleum geology and engineering, 2017, 31(2): 101-104. | |
[17] | 孙敬, 刘德华, 张亮, 等. 低渗透油藏递减影响因素的灰色关联分析[J]. 特种油气藏, 2012, 19(2):90-93. |
SUN Jing, LIU Dehua, ZHANG Liang, et al. Grey correlation analysis of influencing factors of low permeability reservoir decline[J]. Special Oil & Gas Reservoirs, 2012, 19(2): 90-93. | |
[18] |
LI H Z, QIN J S, YANG D Y. An improved CO2-oil minimum miscibility pressure correlation for live and dead crude oils[J]. Industrial and Engineering Chemistry Research, 2012, 51(8): 3516-3523.
doi: 10.1021/ie202339g |
[19] | 孙业恒, 吕广忠, 王延芳, 等. 确定CO2最小混相压力的状态方程法[J]. 油气地质与采收率, 2006, 13(1):82-84. |
SUN Yeheng, LYU Guangzhong, WANG Yanfang, et al. Equation of state method for determining minimum miscible pressure of CO2[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(1): 82-84. | |
[20] | YUAN H, JOHN R T, EGWUENU A M, et al. Improved MMP correlations for CO2 floods using analytical gas flooding theory[J]. SPE Reservoir Evaluation and Engineering, 2004, 8(5): 6-18. |
[21] | SPENCE A S JR, WATKINS R W. The effect of microscopic core heterogeneity on miscible flood residual oil saturation[C]// Paper SPE-9229-MS presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, September 1980. |
[22] | 候大力, 罗平亚, 孙雷, 等. 预测烃类气体—原油体系最小混相压力的改进模型[J]. 新疆石油地质, 2013, 34(6):684-688. |
HOU Dali, LUO Pingya, SUN Lei, et al. An improved model for predicting minimum miscible pressure in hydrocarbon gas-oil system[J]. Xinjiang Petroleum Geology, 2013, 34(6): 684-688. | |
[23] |
鞠斌山, 秦积舜, 李治平, 等. 二氧化碳—原油体系最小混相压力预测模[J]. 石油学报, 2012, 33(2):274-277.
doi: 10.7623/syxb201202013 |
JU Binshan, QIN Jishun, LI Zhiping, et al. Prediction model of minimum miscibility pressure in carbon dioxide and crude oil system[J]. Acta Petrolei Sinica, 2012, 33(2): 274-277.
doi: 10.7623/syxb201202013 |
|
[24] | 田巍. 老油田注CO2开发提高注气能力的方法[J]. 石油与天然气化工, 2020, 49(3):72-77. |
TIAN Wei. A method of improving gas injection capacity by CO2 injection for old oilfield[J]. Chemical Engineering of Oil and Gas, 2020, 49(3): 72-77. | |
[25] | 刘小杰, 黄帅帅, 美合日阿依·穆泰力普, 等. CO2与混合烷烃最小混相压力的界面张力法实验研究[J]. 石油与天然气化工, 2020, 49(3):87-92. |
LIU Xiaojie, HUANG Shuaishuai, MEIHERIAYI Mutailipu, et al. Experiments on the minimum mixing pressure of CO2 and mixed alkane by using the interfacial tension regression method[J]. Chemical Engineering of Oil and Gas, 2020, 49(3): 87-92. | |
[26] | 仉莉. 降低CO2驱油最小混相压力化学体系研发[J]. 油气地质与采收率, 2020, 27(1):45-49. |
ZHANG Li. Development of chemical system for reducing minimum miscible pressure during CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 45-49. | |
[27] | 侯智玮, 刘勇, 叶锋, 等. 基于GPR-DE模型的CO2-原油体系最小混相压力研究[J]. 油气地质与采收率, 2021, 28(3):126-133. |
HOU Zhiwei, LIU Yong, YE Feng, et al. Study on minimum miscibility pressure of CO2-crude oil system based on GPR-DE model[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3): 126-133. |
[1] | 唐建东, 王智林, 葛政俊. 苏北盆地江苏油田CO2驱油技术进展及应用 [J]. 油气藏评价与开发, 2024, 14(1): 18-25. |
[2] | 李建山, 高浩, 鄢长灏, 王石头, 王亮亮. 原油-CO2相互作用机理分子动力学模拟研究 [J]. 油气藏评价与开发, 2024, 14(1): 26-34. |
[3] | 石彦, 谢俊辉, 郭小婷, 吴通, 陈德全, 孙琳, 杜代军. 新疆油田中深层稠油CO2驱/吞吐实验研究 [J]. 油气藏评价与开发, 2024, 14(1): 76-82. |
[4] | 张志升, 吴向阳, 吴倩, 王冀星, 林汉弛, 郭军红, 王锐, 李金花, 林千果. CO2驱油封存泄漏风险管理系统及应用研究 [J]. 油气藏评价与开发, 2024, 14(1): 91-101. |
[5] | 罗红文, 张琴, 李海涛, 向雨行, 李颖, 庞伟, 刘畅, 于皓, 王亚宁. 致密油水平井温度剖面影响规律研究 [J]. 油气藏评价与开发, 2023, 13(5): 676-685. |
[6] | 陈秀林, 王秀宇, 许昌民, 张聪. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 296-304. |
[7] | 王高峰, 廖广志, 李宏斌, 胡志明, 魏宁, 丛连铸. CO2驱气机理与提高采收率评价模型 [J]. 油气藏评价与开发, 2022, 12(5): 734-740. |
[8] | 崔传智,闫大伟,姚同玉,王建,张传宝,吴忠维. CO2驱前缘运移规律及气窜时机预测方法——以胜利油田G89-1区块为例 [J]. 油气藏评价与开发, 2022, 12(5): 741-747. |
[9] | 邓家胜,王子逸,何旺达,彭东宇,余波,唐洪明. 绿泥石与CO2溶液反应实验研究 [J]. 油气藏评价与开发, 2022, 12(5): 777-783. |
[10] | 李阳,黄文欢,金勇,何应付,陈祖华,汤勇,吴公益. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用 [J]. 油气藏评价与开发, 2021, 11(6): 793-804. |
[11] | 计秉玉,何应付. 中国石化低渗透油藏CO2驱油实践与认识 [J]. 油气藏评价与开发, 2021, 11(6): 805-811. |
[12] | 张宗檩,吕广忠,王杰. 胜利油田CCUS技术及应用 [J]. 油气藏评价与开发, 2021, 11(6): 812-822. |
[13] | 唐良睿,贾英,严谨,李广辉,汪勇,何佑伟,秦佳正,汤勇. 枯竭气藏CO2埋存潜力计算方法研究 [J]. 油气藏评价与开发, 2021, 11(6): 858-863. |
[14] | 吴公益,赵梓平,吴波. 苏北不同类型油藏CO2驱开发模式及经济效益评价 [J]. 油气藏评价与开发, 2021, 11(6): 864-870. |
[15] | 李伟,唐放,侯博恒,钱银,崔传智,陆水青山,吴忠维. 基于神经网络的南海东部砂岩油藏采收率预测方法 [J]. 油气藏评价与开发, 2021, 11(5): 730-735. |
|