[1] |
蔡博峰, 庞凌云, 曹丽斌, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016—2018年)评估[J]. 环境工程, 2019, 37(2):1-7.
|
|
CAI Bofeng, PANG Lingyun, CAO Libin, et al. Two-year implementation assessment (2016—2018) of China’s Technical Guideline on Environmental Risk Assessment for Carbon Dioxide Capture, Utilization and Storage (on trial)[J]. Environmental Engineering, 2019, 37(2): 1-7.
|
[2] |
LIU B, ZHAO F Y, XU J P, et al. Experimental investigation and numerical simulation of CO2-brine-rock interactions during CO2 sequestration in a deep saline aquifer[J]. Sustainability, 2019, 11(2): 317.
doi: 10.3390/su11020317
|
[3] |
GUSTAFSSON Å B, PUIGDOMENECH I. The effect of pH on chlorite dissolution rates at 25 ℃[C]. [S.l.]:Materials Research Society symposia proceedings, 2002.
|
[4] |
BLACK J R, CARROLL S A, HAESE R R. Rates of mineral dissolution under CO2 storage conditions[J]. Chemical Geology, 2015, 399: 134-144.
doi: 10.1016/j.chemgeo.2014.09.020
|
[5] |
LOUGEAR A, GRODZICKI M, BERTOLDI C, et al. Mössbauer and molecular orbital study of chlorites[J]. Physics and Chemistry of Minerals, 2000, 27(4): 258-269.
doi: 10.1007/s002690050255
|
[6] |
BRANDT F, BOSBACH D, KRAWCZYK-BÄRSCH E, et al. Chlorite dissolution in the acid ph-range: A combined microscopic and macroscopic approach[J]. Geochimica et Cosmochimica Acta, 2003, 67(8): 1451-1461.
doi: 10.1016/S0016-7037(02)01293-0
|
[7] |
HAMER M, GRAHAM R C, AMRHEIN C, et al. Dissolution of ripidolite (Mg, Fe-chlorite) in organic and inorganic acid solutions[J]. Soil Science Society of America Journal, 2003, 67(2): 654-661.
doi: 10.2136/sssaj2003.6540
|
[8] |
KAMEDA J, SUGIMORI H, MURAKAMI T. Modification to the crystal structure of chlorite during early stages of its dissolution[J]. Physics & Chemistry of Minerals, 2009, 36(9): 537-544.
|
[9] |
SMITH M M, WOLERY T J, CARROLL S A. Kinetics of chlorite dissolution at elevated temperatures and CO2 conditions[J]. Chemical Geology, 2013, 347: 1-8.
doi: 10.1016/j.chemgeo.2013.02.017
|
[10] |
BLACK J R, HAESE R R. Batch reactor experimental results for GaMin’11: Reactivity of siderite/ankerite, labradorite, illite and chlorite under CO2 saturated conditions[J]. Energy Procedia, 2014, 63: 5443-5449.
doi: 10.1016/j.egypro.2014.11.575
|
[11] |
LU J M, KHARAKA Y K, THORDSEN J J, et al. CO2-rock-brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, U.S.A[J]. Chemical Geology, 2012, 291(1): 269-277.
doi: 10.1016/j.chemgeo.2011.10.020
|
[12] |
DEER W A, HOWIE R A, ZUSSMAN J. An introduction to the rock-forming minerals[M]. Kent: Prentice Hall, 2013.
|
[13] |
NAGY K L. Dissolution and precipitation kinetics of sheet silicates[J]. Reviews in Mineralogy and Geochemistry, 1995, 31(1): 173-233..
|
[14] |
LOWSON R T, BROWN P L, COMARMOND M-C J, et al. The kinetics of chlorite dissolution[J]. Geochimica Et Cosmochimica Acta, 2007, 71(6): 1431-1447.
doi: 10.1016/j.gca.2006.12.008
|
[15] |
唐洪明. 常规稠油油藏储层损害机理与保护技术研究[D]. 成都: 西南石油学院, 2003.
|
|
TANG Hongming. Research on reservoir damage mechanism and protection technology of conventional heavy oil reservoir[D]. Chengdu: Southwest Petroleum Institute, 2003.
|
[16] |
唐洪明, 赵峰, 李皋, 等. 绿泥石与土酸、氟硼酸反应实验研究[J]. 油田化学, 2007, 24(4):307-309.
|
|
TANG Hongming, ZHAO Feng, LI Gao, et al. Experiment study on reactions of chlorite with mud and fluoboric acids[J]. Oilfield Chemistry, 2007, 24(4): 307-309.
|
[17] |
GILFILLAN S M V, LOLLAR B S, HOLLAND G, et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J]. Nature, 2009, 458: 614-618.
doi: 10.1038/nature07852
|
[18] |
KASZUBA J P, JANECKY D R, SNOW M G. Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200 bars: Implications for geologic sequestration of carbon[J]. Applied Geochemistry, 2003, 18(7): 1065-1080.
doi: 10.1016/S0883-2927(02)00239-1
|
[19] |
WATSON M N, ZWINGMANN N, LEMON N M. The Ladbroke Grove-Katnook Carbon Dioxide Natural Laboratory: A recent CO2 accumulation in a lithic sandstone reservoir[C]// Paper presented at the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, October 2002.
|
[20] |
BLACK J R, HAESE R R. Chlorite dissolution rates under CO2 saturated conditions from 50 to 120 °C and 120 to 200 bar CO2[J]. Geochimica et Cosmochimica Acta, 2014, 125: 225-240.
doi: 10.1016/j.gca.2013.10.021
|
[21] |
ROSENBAUER R J, KOKSALAN T, PALANDRI J L. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers[J]. Fuel Processing Technology, 2005, 86(14-15): 1581-1597.
doi: 10.1016/j.fuproc.2005.01.011
|
[22] |
KIRSTE D M, WATSON M N, TINGATE P R. Geochemical modelling of CO2-water-rock interaction in the Pretty Hill Formation, Otway Basin, Eastern Australasian basins symposium Ⅱ[C]// Paper presented at the PESA Eastern Australasian Basins Symposium II, [S.l.], 2004.
|
[23] |
LUQUOT L, ANDREANI M, GOUZE P, et al. CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation - Otway Basin-Australia)[J]. Chemical Geology, 2012, 294-295: 75-88.
|