油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (3): 358-367.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.011
收稿日期:
2022-03-02
出版日期:
2023-06-26
发布日期:
2023-06-26
通讯作者:
高国忠(1974—),男,博士,教授,主要从事测井技术、定向钻井、电磁勘探、地球物理正反演、大数据和人工智能等方面的研究。 地址:湖北省武汉市蔡甸区大学城路111号长江大学地球物理与石油资源学院,邮政编码:430100。E-mail:作者简介:
聂云丽(1997— ),女,在读硕士研究生,主要从事地球物理大数据方面的研究。 地址:湖北省武汉市蔡甸区大学城路111号长江大学地球物理与石油资源学院,邮政编码:430100。E-mail:基金资助:
NIE Yunli1,2(),GAO Guozhong1,2()
Received:
2022-03-02
Online:
2023-06-26
Published:
2023-06-26
摘要:
为了解决页岩气“甜点”分类识别涉及指标多、需要根据个人经验判别、耗时耗力的问题,提出了一种基于随机森林模型的页岩气“甜点”分类方法。首先,选取长宁区的10口井数据,利用肯德尔相关分析筛选出用于识别的11种特征。然后再分别采用单棵决策树和随机森林方法进行预测,得到页岩气“甜点”识别结果。最后,对预测结果分类并进行算法参数优化。实际应用结果表明,单棵决策树预测精度虽可以达到97.7 %,但呈现过拟合趋势,且剪枝之后拟合精度大大降低到只有70.7 %;采用的随机森林方法避免了单棵决策树的缺陷,并且预测的精度达到98 %,而且,计算代价小,能有效降低时间损耗、节省人力成本。证明随机森林机器学习方法结合多源信息是实现页岩气“甜点”识别预测的一种有效手段。
中图分类号:
聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法[J]. 油气藏评价与开发, 2023, 13(3): 358-367.
NIE Yunli, GAO Guozhong. Classification of shale gas “sweet spot” based on Random Forest machine learning[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 358-367.
表 1
样本特性"
类型 | 有机质质量 | 储层品质 | 完井质量 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC/ % | 总含气量 (压力系数为1.0)/ (m3/t) | 总含气量 (压力系数为2.0)/ (m3/t) | 孔隙度/ % | 厚度/ m | 泊松比 | 杨氏 模量/ GPa | 垂向 应力/ MPa | 破裂 压力/ MPa | 脆性矿物 含量(含碳酸盐岩+碎屑岩)/% | 脆性矿物 含量(纵横波比)/% | ||||
Ⅰ | 最小值 | 2.30 | 0.90 | 1.30 | 2.70 | 3.0 | 0.190 | 31.1 | 50.10 | 43.90 | 43.00 | 42.80 | ||
平均值 | 7.25 | 4.60 | 6.80 | 5.00 | 735.0 | 0.240 | 25 444.4 | 81.30 | 91.20 | 62.80 | 65.35 | |||
最大值 | 12.20 | 8.30 | 12.30 | 7.30 | 1 467.0 | 0.290 | 50 857.7 | 112.50 | 138.50 | 82.60 | 87.90 | |||
Ⅱ | 最小值 | 1.70 | 2.30 | 3.50 | 3.20 | 11.0 | 0.150 | 36.2 | 54.10 | 40.60 | 46.60 | 42.10 | ||
平均值 | 3.05 | 3.95 | 5.75 | 4.60 | 474.0 | 0.225 | 25 519.2 | 83.35 | 94.50 | 63.15 | 61.45 | |||
最大值 | 4.40 | 5.60 | 8.00 | 6.00 | 937.0 | 0.300 | 51 002.3 | 112.60 | 148.40 | 79.70 | 80.80 | |||
Ⅲ | 最小值 | 1.00 | 1.30 | 2.00 | 0.30 | 7.0 | 0.240 | 38.6 | 51.80 | 46.70 | 48.40 | 61.50 | ||
平均值 | 2.85 | 1.50 | 4.30 | 1.45 | 177.9 | 0.290 | 31 901.2 | 82.25 | 110.65 | 55.55 | 75.00 | |||
最大值 | 4.70 | 1.70 | 6.60 | 2.60 | 348.8 | 0.340 | 63 763.9 | 112.70 | 174.60 | 62.70 | 88.50 |
[1] |
ZOU C N, YANG Z, ZHU R K, et al. Geologic significance and optimization technique of sweet spots in unconventional shale systems[J]. Journal of Asian Earth Sciences, 2019, 178: 3-19.
doi: 10.1016/j.jseaes.2018.07.005 |
[2] |
ZOU C N, YANG Z, ZHANG G S, et al. Conventional and unconventional petroleum “orderly accumulation”: Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14-30.
doi: 10.1016/S1876-3804(14)60002-1 |
[3] |
邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.
doi: 10.11698/PED.2016.02.02 |
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178.
doi: 10.11698/PED.2016.02.02 |
|
[4] |
赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1): 31-44.
doi: 10.3969/j.issn.1672-7703.2020.01.004 |
ZHAO Wenzhi, JIA Ailin, WEI Yunsheng, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1): 31-44.
doi: 10.3969/j.issn.1672-7703.2020.01.004 |
|
[5] | 廖东良. 页岩气层“双甜点”评价方法及工程应用展望[J]. 石油钻探技术, 2020, 48(4): 94-99. |
LIAO Dongliang. Evaluation methods and engineering application of the feasibility of “Double Sweet Spots” in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 94-99. | |
[6] | 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021, 41(1): 59-71. |
HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1):59-71. | |
[7] |
MA X H. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry B, 2019, 6(3): 240-249.
doi: 10.1016/j.ngib.2018.10.005 |
[8] | HASHMY K, ABUEITA S, BARNETT C, et al. Log-based identification of sweet spots for effective fracs in shale reservoirs[C]// Paper SPE-149278-MS presented at the Canadian Unconventional Resources Conference, Calgary, Alberta, Canada, November 2011. |
[9] | 李小明, 柳吉荣, 吝文, 等. 荆门探区五峰组—龙马溪组页岩储层特征及甜点层段评价[J]. 煤田地质与勘探, 2021, 49(6): 1-11. |
LI Xiaoming, LIU Jirong, LIN Wen, et al. Characteristics of the shale gas reservoirs and evaluation of sweet spots in Wufeng Formation and Longmaxi Formation in Jingmen exploration area[J]. Coal Geology & Exploration, 2021, 49(6): 1-11. | |
[10] |
夏宏泉, 赖俊, 李高仁, 等. 基于测井资料的页岩油储层甜点预测[J]. 西南石油大学学报(自然科学版), 2021, 43(4): 199-207.
doi: 10.11885/j.issn.16745086.2021.04.28.10 |
XIA Hongquan, LAI Jun, LI Gaoren, et al. Sweet spot prediction of shale oil reservoir based on logging Data[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 199-207.
doi: 10.11885/j.issn.16745086.2021.04.28.10 |
|
[11] |
WU H Z, XIONG L, GE Z W, et al. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin[J]. Natural Gas Industry B, 2019, 6(5): 463-471.
doi: 10.1016/j.ngib.2019.03.003 |
[12] | WANG J B, FENG M G, YAN W, et al. Influence factors and evaluation methods for shale reservoir fracability in Jiaoshiba Area[J]. Fault-Block Oil & Gas Field, 2016, 23(2): 216-220. |
[13] | 陈桂华, 肖钢, 徐强, 等. 页岩油气地质评价方法和流程[J]. 天然气工业, 2012, 32(12): 1-5. |
CHEN Guihua, XIAO Gang, XU Qiang, et al. A method and workflow for shale oil and gas geological evaluation[J]. Natural Gas Industry, 2012, 32(12): 1-5. | |
[14] |
马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.
doi: 10.11698/PED.2018.04.03 |
MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.
doi: 10.11698/PED.2018.04.03 |
|
[15] |
ALSHAKHS M, REZAEE R. Sweet-spot mapping through formation evaluation and property modelling using data from the Goldwyer Formation of the Barbwire Terrace, Canning Basin[J]. Petroleum, 2019, 5(1): 13-29.
doi: 10.1016/j.petlm.2018.06.003 |
[16] | CHORN L, YARUS J, DEL ROSARIO-DAVIS S, et al. Identification of shale sweet spots using key property estimates from log analysis and geostatistics[C]// Paper URTEC-1580188-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2013. |
[17] | ALDRICH J B, SEIDLE J P. Sweet spot identification and optimization in unconventional reservoirs[J]. Mountain Geologist, 2018, 52(3): 5-12. |
[18] |
PAN R F, GONG Q, YAN J, et al. Elements and gas enrichment laws of sweet spots in shale gas reservoir: A case study of the Longmaxi Fm in Changning Block, Sichuan Basin[J]. Natural Gas Industry B, 2016, 3(3): 195-201.
doi: 10.1016/j.ngib.2016.05.003 |
[19] | 张筠, 葛祥, 王志文. 洛带气田遂宁组致密储层的快速产能评价[J]. 测井技术, 2007, 191(4): 342-346. |
ZHANG Yun, GE Xiang, WANG Zhiwen. Quick evaluation on productivity of compacted clastic reservoir in Suining Formation of Luodai Gas Field[J]. Well Logging Technology, 2007, 191(4): 342-346. | |
[20] | 周广照, 李显明, 黄斌, 等. 优化BP神经网络在川西上三叠统陆相页岩含气性预测中的应用[J]. 矿物岩石, 2017, 37(3): 90-96. |
ZHOU Guangzhao, LI Xianming, HUANG Bin, et al. Application of optimized BP Networks to gas content PR ediction of continental shale in Upper Triassic of Western Sichuan Basin[J]. Mineralogy and Petrology, 2017, 37(3): 90-96. | |
[21] | 王彬, 汤勇, 勐睿, 等. 利用人工神经网络优选页岩气有利开发区域[J]. 重庆科技学院学报(自然科学版), 2015, 17(6): 33-35. |
WANG Bin, TANG Yong, MENG Rui, et al. Optimize the exploitation advantageous area of shale gas reservoirs by artificial neural network[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2015, 17(6): 33-35. | |
[22] |
汪敏, 冯婷婷, 闵帆, 等. 页岩气储层预测的多标签主动学习算法[J]. 计算机应用, 2022, 42(2): 646-654.
doi: 10.11772/j.issn.1001-9081.2021041023 |
WANG Min, FENG Tingting, MIN Fan, et al. Multi-label active learning algorithm for shale gas reservoir prediction[J]. Journal of Computer Applications, 2022, 42(2): 646-654.
doi: 10.11772/j.issn.1001-9081.2021041023 |
|
[23] | 钱辰, 杨少春, 许子君. 基于机器学习的页岩气甜点评价及其应用综述[C]// 油气田勘探与开发国际会议论文集. 西安: 西安石油大学, 2019: 573-583. |
QIAN Chen, YANG Shaochun, XU Zijun. Review of evaluation of shale gas sweet spots and its application based on machine learning[C]// Proceedings of the International Conference on Oil and Gas Exploration and Development. Xi'an: Xi'an Shiyou University, 2019: 573-583. | |
[24] | 陈胜, 赵文智, 欧阳永林, 等. 利用地球物理综合预测方法识别页岩气储层甜点——以四川盆地长宁区块下志留统龙马溪组为例[J]. 天然气工业, 2017, 37(5): 20-30. |
CHEN Sheng, ZHAO Wenzhi, OUYANG Yonglin, et al. Comprehensive prediction of shale gas sweet spots based on geophysical properties: A case study of the Lower Silurian Longmaxi Fm in Changning block, Sichuan Basin[J]. Natural Gas Industry, 2017, 37(5): 20-30. | |
[25] | 刘伟, 梁兴, 姚秋昌, 等. 四川盆地昭通区块龙马溪组页岩气“甜点”预测方法及应用[J]. 石油地球物理勘探, 2018, 53(S2): 211-217. |
LIU Wei, LIANG Xing, YAO Qiuchang, et al. Shale gas sweet spot identification in Longmaxi, Sichuan Basin[J]. Oil Geophysical Prospecting, 2018, 53(S2): 211-217. | |
[26] |
万远飞, 秦启荣, 范宇, 等. 长宁背斜龙马溪组页岩裂缝发育特征及期次解析[J]. 特种油气藏, 2021, 28(1): 59-66.
doi: 10.3969/j.issn.1006-6535.2021.01.008 |
WAN Yuanfei, QIN Qirong, FAN Yu, et al. Development characteristics of shale fractures in longmaxi formation of changning anticline and the stage analysis[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 59-66.
doi: 10.3969/j.issn.1006-6535.2021.01.008 |
|
[27] | 葛勋, 郭彤楼, 马永生, 等. 四川盆地东南缘林滩场地区上奥陶统五峰组-龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647. |
GE Xun, GUO Tonglou, MA Yongsheng, et al. Prediction of shale reservoir sweet spots of the Upper Ordovician Wufeng-Longmaxi Formations in Lintanchang area, southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 633-647. | |
[28] | 朱维兵, 庞青松, 张朝界. 页岩气旋转式井壁取心器转向机构设计与优化[J]. 石油机械, 2021, 49(4): 51-57. |
ZHU Weibing, PANG Qingsong, ZHANG Chaojie. Design and optimization of steering device for shale gas rotary sidewall coring[J]. China Petroleum Machinery, 2021, 49(4): 51-57. | |
[29] |
彭寿昌, 查小军, 雷祥辉, 等. 吉木萨尔凹陷芦草沟组上“甜点”段页岩油储层演化特征及差异性评价[J]. 特种油气藏, 2021, 28(4): 30-38.
doi: 10.3969/j.issn.1006-6535.2021.04.005 |
PENG Shouchang, ZHA Xiaojun, LEI Xianghui, et al. Evolution characteristics and difference evaluation of shale oil reservoirs in the upper sweet spot interval of Lucaogou Formation in Jimusaer Sag[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 30-38.
doi: 10.3969/j.issn.1006-6535.2021.04.005 |
|
[30] | 曾义金, 陈作, 卞晓冰. 川东南深层页岩气分段压裂技术的突破与认识[J]. 天然气工业, 2016, 36(1): 61-67. |
ZENG Yijin, CHEN Zuo, BIAN Xiaobing. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J]. Natural Gas Industry, 2016, 36(1): 61-67. | |
[31] |
LIANG X, WANG G C, XU Z Y, et al. Comprehensive evaluation technology for shale gas sweet spots in the complex marine mountains, South China: A case study from Zhaotong national shale gas demonstration zone[J]. Natural Gas Industry B, 2016, 3(1): 27-36.
doi: 10.1016/j.ngib.2016.02.003 |
[32] | 沈骋, 吴建发, 付永强, 等. 页岩气井长水平段压裂一体化动态评估——以长宁国家级页岩气示范区为例[J]. 天然气工业, 2022, 42(2): 123-132. |
SHEN Cheng, WU Jianfa, FU Yongqiang, et al. Integrated dynamic evaluation of long lateral fracturing in shale gas wells: A case study on the Changning National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2022, 42(2): 123-132. | |
[33] |
杨光, 田伟志, 吕江, 等. 威远构造W202区块龙马溪组龙11亚段页岩气储集层岩石学特征[J]. 特种油气藏, 2021, 28(2): 34-40.
doi: 10.3969/j.issn.1006-6535.2021.02.005 |
YANG Guang, TIAN Weizhi, LYU Jiang, et al. Petrological characteristics of shale gas reservoirs in Long11 sub-member of Longmaxi Formation in W202 Block of Weiyuan structure[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 34-40.
doi: 10.3969/j.issn.1006-6535.2021.02.005 |
|
[34] | 陈永秀. 相关系数含义的理解[J]. 中国考试, 2011, 231(7): 15-19. |
CHEN Yongxiu. Methods for calculating the correlation coefficient[J]. Journal of China Examinations, 2011, 231(7): 15-19. | |
[35] |
KAMNITUI N, GENEST C, JAWORSKI P, et al. On the size of the class of bivariate extreme-value copulas with a fixed value of Spearman's Rho or Kendall's Tau[J]. Journal of Mathematical Analysis and Applications, 2019, 472(1): 920-936.
doi: 10.1016/j.jmaa.2018.11.057 |
[36] | 刘军. 基于叶枝比率的决策树构建算法[J]. 信息网络安全, 2013, 146(2): 9-12. |
LIU Jun. Algorithm of constructing decision tree based on the leaf and branch ratio[J]. Netinfo Security, 2013, 146(2): 9-12. | |
[37] | QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106. |
[38] |
PORTER B W, BAREISS R, HOLTE R C. Concept learning and heuristic classification in weak-theory domains[J]. Artificial Intelligence, 1990, 45(1-2): 229-263.
doi: 10.1016/0004-3702(90)90041-W |
[39] | 陈敏雅, 石蕾. 基于SVM多分类决策树的研究综述[J]. 电脑知识与技术, 2008, 8(8): 1427-1429. |
CHEN Minya, SHI Lei. Study the survey in multi-class classifier based on SVM decision tree[J]. Computer Knowledge and Technology, 2008, 8(8): 1427-1429. | |
[40] | 曹正凤, 谢邦昌, 纪宏. 一种随机森林的混合算法[J]. 统计与决策, 2014, (4): 7-9. |
CAO Zhengfeng, XIE Bangchang, JI Hong. A hybrid algorithm of random forest[J]. Statistics & Decision, 2014, (4): 7-9. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[3] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[4] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[5] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[6] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[7] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[8] | 林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究 [J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
[9] | 刘洪林,周尚文,李晓波. PCA-OPLS联合法快速评价页岩气井储量动用程度 [J]. 油气藏评价与开发, 2023, 13(4): 474-483. |
[10] | 卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究 [J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
[11] | 邱小雪,钟光海,李贤胜,陈猛,凌玮桐. 不同井斜页岩气水平井流动特征的CFD模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 340-347. |
[12] | 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例 [J]. 油气藏评价与开发, 2023, 13(2): 240-246. |
[13] | 赵仁文,肖佃师,卢双舫,周能武. 高—过成熟陆相断陷盆地页岩与海相页岩储层特征对比——以徐家围子断陷沙河子组和四川盆地龙马溪组为例 [J]. 油气藏评价与开发, 2023, 13(1): 52-63. |
[14] | 李颖,李茂茂,李海涛,于皓,张启辉,罗红文. 水相渗吸对页岩储层的物化作用机理研究 [J]. 油气藏评价与开发, 2023, 13(1): 64-73. |
[15] | 何封,冯强,崔宇诗. W页岩气藏气井控压生产制度数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(1): 91-99. |
|