油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (4): 525-536.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.015
• 综合研究 • 上一篇
收稿日期:
2022-06-20
发布日期:
2023-09-01
出版日期:
2023-08-26
作者简介:
谌丽(1998—),女,硕士研究生,主要从事地球物理测井方面的工作。地址:北京市海淀区学院路20号中国石油勘探开发研究院,邮政编码:100083。E-mail:基金资助:
SHEN Li(),WANG Caizhi,NING Congqian,LIU Yingming,WANG Hao
Received:
2022-06-20
Online:
2023-09-01
Published:
2023-08-26
摘要:
岩相分析是储层评价的基础,受取心数量和成本的影响,针对未取心井利用测井资料开展岩相识别工作至关重要。根据岩心薄片鉴定结果,并结合成像测井资料将鄂尔多斯盆地陇东地区长7段岩相划分为6类。在岩心标定的基础上,对各类岩相的测井响应特征进行总结,建立该研究区基于常规测井曲线的岩相识别模式,结合机器学习算法开展岩相的自动识别。由于传统的分类算法受岩相样本不均衡的影响较大,对比多种不均衡数据分类算法在该地区的应用效果发现,集成学习Bagging算法通过组合多个基分类器,极大地改善了各类岩相的分类性能,并将该地区岩相的整体识别精度提升了20 %。据地区应用效果显示,单井识别精度可达84.33 %,具有较好的适用性。
中图分类号:
Li SHEN,Caizhi WANG,Congqian NING, et al. Well-log lithofacies classification based on machine learning for Chang-7 member in Longdong area of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 525-536.
表2
基于重采样后的岩相样本分布"
欠采样 方法 | 岩相样本数/个 | |||||
---|---|---|---|---|---|---|
均质 砂岩 | 非均质砂岩 | 暗色 泥岩 | 粉砂质泥岩 | 黑色 页岩 | 凝灰岩 | |
不采样 | 1 290 | 4 429 | 2 322 | 4 657 | 1 843 | 336 |
随机欠采样 | 336 | 336 | 336 | 336 | 336 | 336 |
OSS | 1 157 | 3 640 | 2 100 | 4 393 | 860 | 336 |
ENN | 786 | 2 971 | 1 219 | 3 134 | 1 564 | 336 |
NCR | 1 021 | 3 795 | 1 828 | 4 144 | 1 723 | 336 |
随机过采样 | 4 657 | 4 657 | 4 657 | 4 657 | 4 657 | 4 657 |
SMOTE | 4 657 | 4 657 | 4 657 | 4 657 | 4 657 | 4 657 |
ADASYN | 1 290 | 4 429 | 2 322 | 4 657 | 1 843 | 4 683 |
Borderline- SMOTE | 4 657 | 4 657 | 4 657 | 4 657 | 4 657 | 4 657 |
[1] |
付锁堂, 金之钧, 付金华, 等. 鄂尔多斯盆地延长组7段从致密油到页岩油认识的转变及勘探开发意义[J]. 石油学报, 2021, 42(5): 561-569.
doi: 10.7623/syxb202105001 |
FU Suotang, JIN Zhijun, FU Jinhua, et al. Transformation of understanding from tight oil to shale oil in the Member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development[J]. Acta Petrolei Sinica, 2021, 42(5): 561-569.
doi: 10.7623/syxb202105001 |
|
[2] |
HALL B. Facies classification using machine learning[J]. The Leading Edge, 2016, 35(10): 906-909.
doi: 10.1190/tle35100906.1 |
[3] | BESTAGINI P, LIPARI V, TUBARO S. A machine learning approach to facies classification using well logs[C]// Paper SEG-2017-17729805 presented at the 2017 SEG International Exposition and Annual Meeting, Houston, Texas, September 2017. |
[4] |
NISHITSUJI Y, EXLEY R. Elastic impedance based facies classification using support vector machine and deep learning[J]. Geophysical Prospecting, 2019, 67(4): 1040-1054.
doi: 10.1111/gpr.2019.67.issue-4 |
[5] | 石小松, 程国建. 用自组织特征映射神经网络识别岩相[J]. 电脑知识与技术, 2008, 4(26): 1764-1766. |
SHI Xiaosong, CHENG Guojian. The logging lithological identification by using self-organizing feature map neural networks[J]. Computer Knowledge and Technology, 2008, 4(26): 1764-1766. | |
[6] | 薛林福, 潘保芝. 用自组织神经网络自动识别岩相[J]. 长春科技大学学报, 1999, 29(2): 144-147. |
XUE Linfu, PAN Baozhi. Identify lithofacies automatically using self-organizing neural network[J]. Journal of Changchun University of Science and Technology, 1999, 29(2): 144-147. | |
[7] | 郭荣坤, 王忠东. ANN测井相分析方法研究[J]. 地球物理学进展, 1996, 11(2): 53-65 |
GUO Rongkun, WANG Zhongdong. Analysis of well logging facies by ANN technique[J]. Progress in Geophysics, 1996, 11(2): 53-65. | |
[8] |
付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.
doi: 10.11698/PED.2020.05.03 |
FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883.
doi: 10.11698/PED.2020.05.03 |
|
[9] | 张才利, 刘新社, 杨亚娟, 等. 鄂尔多斯盆地长庆油田油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 253-263. |
ZHANG Caili, LIU Xinshe, YANG Yajuan, et al. Petroleum exploration history and enlightenment of Changqing Oilfield in Ordos Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 253-263. | |
[10] | 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. |
FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil of Mesozoic Yanchang formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. | |
[11] | 林世杭. 基于层次化随机森林的多标签分类算法研究[D]. 广州: 华南理工大学, 2017. |
LIN Shihang. Multi-label classification algorithm based on hierarchical random forest[D]. Guangzhou: South China University of Technology, 2017. | |
[12] | 陶新民, 郝思媛, 张冬雪, 等. 不均衡数据分类算法的综述[J]. 重庆邮电大学学报(自然科学版), 2013, 25(1): 101-110. |
TAO Xinmin, HAO Siyuan, ZHANG Dongxue, et al. Overview of classification algorithms for unbalanced data[J], Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2013, 25(1): 101-110. | |
[13] |
崔鑫, 徐华, 朱亮, 等. 面向不均衡数据的多分类集成算法[J]. 计算机工程与应用, 2022, 58(2): 176-183.
doi: 10.3778/j.issn.1002-8331.2008-0058 |
CUI Xin, XU Hua, ZHU Liang, et al. Multi-classification ensemble algorithm for imbalanced data[J]. Computer Engineering and Applications, 2022, 58(2): 176-183.
doi: 10.3778/j.issn.1002-8331.2008-0058 |
|
[14] | 马陇飞, 萧汉敏, 陶敬伟, 等. 基于深度学习岩性分类的研究与应用[J]. 科学技术与工程, 2022, 22(7): 2609-2617. |
MA Longfei, XIAO Hanmin, TAO Jingwei, et al. Research and application of lithology classification based on deep learning[J]. Science Technology and Engineering, 2022, 22(7): 2609-2617. | |
[15] | 马陇飞, 萧汉敏, 陶敬伟, 等. 基于梯度提升决策树算法的岩性智能分类方法[J]. 油气地质与采收率, 2022, 29(1): 21-29. |
MA Longfei, XIAO Hanmin, TAO Jingwei, et al. Intelligent lithology classification method based on GBDT algorithm[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 21-29. | |
[16] | 王民, 杨金路, 王鑫, 李进步, 等. 基于随机森林算法的泥页岩岩相测井识别[J]. 地球科学, 2023, 48(1): 130-142. |
WANG Min, YANG Jinlu, WANG Xin, et al. Identification of shale lithofacies by well logs based on random forest algorithm[J]. Earth Science, 2023, 48(1): 130-142. | |
[17] | 李昌, 沈安江, 常少英, 等. 机器学习法在碳酸盐岩岩相测井识别中应用及对比——以四川盆地MX地区龙王庙组地层为例[J]. 油气藏评价与开发, 2021, 11(4): 586-596. |
LI Chang, SHEN Anjiang, CHANG Shaoying, et al. Application and contrast of machine learning in carbonate lithofacies log identification: A case study of Longwangmiao Formation of MX area in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 586-596. | |
[18] | 杨静, 陈云天, 蒋春碧. 测井曲线生成问题的机器学习建模范式——以长宁威远地区页岩井为例[J]. 中国海上油气, 2021, 33(1): 76-84. |
YANG Jing, CHEN Yuntian, JIANG Chunbi. Machine learning modeling paradigm for log curve generation problems: Taking shale gas wells in Changning-Weiyuan area as examples[J]. China Offshore Oil and Gas, 2021, 33(1): 76-84. | |
[19] | 杨明任, 申辉林, 曲萨, 等. AdaBoost算法在致密砂岩水淹层识别中的应用[J]. 中国海上油气, 2021, 33(4): 62-69. |
YANG Mingren, SHEN Huilin, QU Sa, et al. Application of AdaBoost algorithm in recognition of water flooded tight sandstone layer[J]. China Offshore Oil and Gas, 2021, 33(4): 62-69. | |
[20] | 刘龙龙, 孙中强, 张金亮, 等. 丽水凹陷古新统储层成岩相测井识别与预测[J]. 中国海上油气, 2021, 33(1): 64-75. |
LIU Longlong, SUN Zhongqiang, ZHANG Jinliang, et al. Logging identification and prediction of Paleocene reservoir diagenetic facies in Lishui sag[J]. China Offshore Oil and Gas, 2021, 33(1): 64-75. | |
[21] | 陈玉林, 李戈理, 杨智新, 等. 基于KNN算法识别合水地区长7储层岩性岩相[J]. 测井技术, 2020, 44(2): 182-185. |
CHEN Yulin, LI Geli, YANG Zhixin, et al. Identification of lithology and lithofacies of Chang7 Reservoir in Heshui area by KNN algorithm[J]. Well Logging Technology, 2020, 44(2): 182-185. | |
[22] | 李文昊. 基于统计学习方法的储层岩相分类研究[D]. 成都: 电子科技大学, 2018. |
LI Wenhao. Research on reservoir lithofacies classification based on statistical learning method[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
[23] | 吕红燕, 冯倩. 随机森林算法研究综述[J]. 河北省科学院学报, 2019, 36(3): 37-41. |
LYU Hongyan, FENG Qian. A review of random forests algorithm[J]. Journal of Hebei Academy of Sciences, 2019, 36(3): 37-41. | |
[24] | 潘主强, 张林, 张磊, 等. 中医临床不均衡数据疾病分类方法研究[J]. 智能系统学报, 2017, 12(6): 848-856. |
PAN Zhuqiang, ZHANG Lin, ZHANG Lei, et al. Research on classification of diseases of clinical imbalanced data in traditional Chinese medicine[J]. CAAI transactions on intelligent systems, 2017, 12(6): 848-856. | |
[25] | 徐丽丽. 面向不均衡数据集的分类算法研究[D]. 大连: 辽宁师范大学, 2016. |
XU Lili. Research on classification algorithm of imbalanced data sets[D]. Dalian: Liaoning Normal University, 2016. | |
[26] | 谷琼. 面向非均衡数据集的机器学习及在地学数据处理中的应用[D]. 武汉: 中国地质大学, 2009. |
GU Qiong. Research of machine learning on imbalanced data sets and its application in geosciences data processing[D]. Wuhan: China University of Geosciences, 2009. | |
[27] | SALEH W B, SAGAR T. Comparative analysis of machine learning classifiers in an imbalanced facies distributed dataset from a libyan carbonate reservoir[C]// Paper OMC-2021-40 presented at the OMC Med Energy Conference and Exhibition, Ravenna, Italy, September 2021. |
[28] | GUARIDO M, EMERY D J, MACQUET M, et al. Pitfalls and insights from a machine learning contest on log facies classification[C]// Paper SEG-2021-3580872 presented at the SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy, Denver, Colorado, USA and online, September 2021. |
[29] | HU C S, SUN B Q. Multitask learning for petrophysical attribute prediction using convolutional neural network and imbalance dataset[C]// Paper SEG-2020-W13-03 presented at the SEG International Exposition and Annual Meeting, Virtual, October 2020. |
[30] |
HALL B. Facies classification using machine learning[J]. The Leading Edge, 2016, 35: 906-909.
doi: 10.1190/tle35100906.1 |
[31] | GUYAGULER B, HORNE R N, ROGERS L. Optimization of well placement in a Gulf of Mexico waterflooding project[J]. SPE Reservoir Evaluation & Engineering, 2002, 5(3): 229-236. |
[32] | EMELYANOVA I, PEYAUD J B, DANCE T, et al. Detecting specific facies in well-log data sets using knowledge-driven hierarchical clustering[J]. Petrophysics, 2020, 61(4): 383-400. |
[33] |
唐伟, 周志华. 基于Bagging的选择性聚类集成[J]. 软件学报, 2005, 16(4): 496-502.
doi: 10.1360/jos160496 |
TANG Wei, ZHOU Zhihua. Bagging-based selective cluster ensemble[J]. Journal of Software, 2005, 16(4): 496-502.
doi: 10.1360/jos160496 |
|
[34] | 车翔玖, 于英杰, 刘全乐. 增强bagging集成学习及多目标检测算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2916-2923. |
CHE Xiangjiu, YU Yingjie, LIU Quanle. Enhanced bagging ensemble learning and multi-target detection algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2916-2923. |
[1] | 王心乾, 余文端, 马晓东, 周韬, 邰浩, 崔钦宇, 邓空, 陆永潮, 刘占红. 基于常规测井曲线的页岩岩相识别与应用——以苏北盆地溱潼凹陷阜宁组二段为例 [J]. 油气藏评价与开发, 2024, 14(5): 699-706. |
[2] | 束青林,魏超平,于田田,计秉玉,张仲平,郑万刚. 稠油开发技术进展及新分类标准建立与应用实践——以胜利油田稠油开发为例 [J]. 油气藏评价与开发, 2024, 14(4): 529-540. |
[3] | 管倩倩,蒋龙,程紫燕,张典栋,王云鹤,张帆. 东营凹陷页岩油岩相要素测井评价新方法及其应用 [J]. 油气藏评价与开发, 2024, 14(3): 435-445. |
[4] | 王欣,韩建强,昝灵,李小龙,彭兴平. 苏北盆地溱潼凹陷阜宁组二段页岩油测井评价研究 [J]. 油气藏评价与开发, 2024, 14(3): 364-372. |
[5] | 沈艳杰,李钧如,张立亚,周洋,程日辉. 松辽盆地营城组火山岩相发育特征——以吉林省九台地区野外露头为例 [J]. 油气藏评价与开发, 2024, 14(2): 224-236. |
[6] | 王敏,曹玥,李万才,赵文琦,王文庸,宋玉莹. 基于孔隙结构和核磁测井建立火山岩储层分类标准——以松南断陷查干花气田为例 [J]. 油气藏评价与开发, 2024, 14(2): 216-223. |
[7] | 熊亮, 曹勤明, 张玲, 王玲辉. 细粒沉积岩岩相划分类型及其油气勘探意义——以四川盆地川西坳陷须家河组五段为例 [J]. 油气藏评价与开发, 2023, 13(5): 548-558. |
[8] | 林中凯,张少龙,李传华,王敏,闫建平,蔡进功,耿斌,胡钦红. 湖相页岩油地层岩相组合类型划分及其油气勘探意义——以博兴洼陷沙河街组为例 [J]. 油气藏评价与开发, 2023, 13(1): 39-51. |
[9] | 梁宏刚,邓锋,马洪涛,孙力,丁辉,杨俊英. JI-FI反演技术在薄砂岩储层预测中的应用——以XH地区K1bs3上部储层为例 [J]. 油气藏评价与开发, 2022, 12(6): 910-917. |
[10] | 高照普. 鄂尔多斯盆地北缘什股壕气区盒2+3段沉积微相及其含气性研究 [J]. 油气藏评价与开发, 2022, 12(2): 292-301. |
[11] | 姚素平,吴聿元,余文端,张柏林,胡文瑄. 下扬子区孤峰组—大隆组露头剖面特征与岩相变化 [J]. 油气藏评价与开发, 2022, 12(1): 215-232. |
[12] | 王永诗,唐东. 咸化断陷湖盆典型页岩剖面地质特征——以东营凹陷为例 [J]. 油气藏评价与开发, 2022, 12(1): 181-191. |
[13] | 赵克斌,孙长青,郭嘉琪,吴传芝. 墨西哥湾天然气水合物富集特征与成藏机制——以WR313和GC955研究区为例 [J]. 油气藏评价与开发, 2021, 11(5): 669-679. |
[14] | 李昌,沈安江,常少英,梁正中,李振林,孟贺. 机器学习法在碳酸盐岩岩相测井识别中应用及对比——以四川盆地MX地区龙王庙组地层为例 [J]. 油气藏评价与开发, 2021, 11(4): 586-596. |
[15] | 钟文俊,熊亮,黎鸿,董晓霞,周静. 测井评价技术在威荣深层页岩气田中的应用 [J]. 油气藏评价与开发, 2021, 11(1): 38-46. |
|