油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (1): 1-9.doi: 10.13809/j.cnki.cn32-1825/te.2024.01.001
收稿日期:
2023-12-26
出版日期:
2024-02-26
发布日期:
2024-03-05
作者简介:
叶晓东(1966—),男,硕士,教授级高级工程师,主要从事石油炼化、节能优化等方面的研究工作。地址:江苏省南京市建邺区江东中路375号,邮政编码:210019。E-mail:基金资助:
YE Xiaodong(),CHEN Jun,CHEN Xi,WANG Haimei,WANG Huijun
Received:
2023-12-26
Online:
2024-02-26
Published:
2024-03-05
摘要:
CCUS(碳捕集、利用与封存)技术是实现全球碳减排的重要途径,也是保障中国能源安全和推动经济协同发展的重要手段。同时,有利于促进中国可持续发展和生态文明建设。中国CCUS技术各环节均取得了显著进展,但要大规模推广应用仍然存在多重制约。基于文献调研和工作积累,阐述了国内外CCUS技术现状,指出了CCUS技术当前所面临的技术挑战及攻关方向。已有的研究工作表明,解决捕集技术能耗和成本高,驱油封存技术有待进一步研究,化工利用技术转化能耗高、转化效率低,封存安全性监测和评估技术体系尚未建立等难题的对策措施有:①针对不同排放源的特性,选用不同的碳捕集方法多元化融合实现源头降本;②攻关多目标优化技术,协调优化驱油效率和CO2封存率;③持续研发新型催化剂,加速CO2的转化反应,提高转化效率;④充分借鉴美国、澳大利亚等国家的碳税政策,探索适合中国CCUS产业的财税激励政策,增加经济效益,提高企业积极性;⑤建立覆盖CCUS全链条各环节的系列标准规范,指导工程建设实施,从规范上降低企业风险。通过这些措施的实施,推动中国CCUS技术的快速发展,为实现碳中和目标做出更大的贡献。
中图分类号:
叶晓东,陈军,陈曦,王海妹,王慧珺. “双碳”目标下的中国CCUS技术挑战及对策[J]. 油气藏评价与开发, 2024, 14(1): 1-9.
YE Xiaodong,CHEN Jun,CHEN Xi,WANG Haimei,WANG Huijun. China's CCUS technology challenges and countermeasures under “double carbon” target[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 1-9.
表1
膜分离法捕集烟道气CO2项目信息[34]"
膜材料 | 试验机构 | 国家 | 试验规模/(Nm3/d) | 烟道气来源 | 建成时间 |
---|---|---|---|---|---|
Polaris? | MTR | 美国 | 86 000.00 | 燃气火力发电厂 | 2014年 |
PolyActive? | Helmholtz-Zentrum Geesthacht | 德国 | 1 200.00 | 燃煤火力发电厂 | 2015年 |
PVAm类材料 | NTNU | 挪威 | 0.96 | 水泥厂 | 2016年 |
Ultrason? | NCCC | 美国 | 1.50 | 燃煤火力发电厂 | 2017年 |
Polaris? | 华润海丰 | 中国 | 86 000.00 | 燃煤火力发电厂 | 2019年 |
PVAm类材料 | 天津大学 | 中国 | 50 000.00 | 燃煤火力发电厂 | 2021年 |
表3
碳捕集技术评估[34]"
捕集技术 | 工业成本 | ||||||||
---|---|---|---|---|---|---|---|---|---|
现状 | 2030年 | ||||||||
热耗量/ (GJ/t) | 电耗量/ [(kW·h)/t] | 设备投资/ (元/t) | 总成本/ (元/t) | 热耗量/ (GJ/t) | 电耗量/ [(kW·h)/t] | 设备投资/ (元/t) | 总成本/ (元/t) | ||
燃烧后化学吸收 | 2.8 | 75 | 40 | 270 | 2.2 | 65 | 40 | 220 | |
燃烧后化学吸附 | 2.0 | 60 | 240 | 400 | 1.8 | 50 | 120 | 270 | |
燃烧后物理吸附 | 2.1 | 80 | 150 | 330 | 1.9 | 70 | 120 | 280 | |
燃烧后膜分离 | 0 | 450 | 150 | 310 | 0 | 250 | 120 | 210 | |
富氧燃烧 | 0 | 380 | 240 | 380 | 0 | 270 | 120 | 220 | |
化学链燃烧 | 80 | 80 |
表4
碳利用技术评估[34]"
技术名称 | 2030年碳减排 潜力/104 t | |
---|---|---|
CO2化学转化制备化学品 | CO2与甲烷重整制备合成气技术 | 2 000~3 000 |
CO2裂解经一氧化碳制备液体燃料技术 | 30~100 | |
CO2加氢合成甲醇技术 | 4 800~7 200 | |
CO2加氢制烯烃技术 | 250~370 | |
CO2光电催化转化技术 | 15~35 | |
CO2合成有机碳酸酯技术 | 350~500 | |
CO2合成可降解聚合物材料技术 | 30~60 | |
CO2合成异氰酸酯/聚氨酯技术 | 350~400 | |
CO2制备PC技术 | 25~35 | |
CO2矿化利用 | 钢渣矿化利用CO2 | 100~150 |
磷石膏矿化利用CO2技术 | 100~150 | |
钾长石加工联合CO2矿化技术 | 20~30 | |
CO2矿化养护混凝土技术 | 4 000~4 500 |
[1] | 陈健, 古共伟, 郜豫川. 我国变压吸附技术的工业应用现状及展望[J]. 化工进展, 1998, 17(1): 14-17. |
CHEN Jian, GU Gongwei, GAO Yuchuan. Actuality and prospect of pressure swing adsorption application in industry[J]. Chemical Industry and Engineering Progress, 1998, 17(1): 14-17. | |
[2] | 陈旭, 杜涛, 李刚. 吸附工艺在碳捕集中的应用现状[J]. 中国电机工程学报, 2019, 39(增刊1): 155-163. |
CHEN Xu, DU Tao, LI Gang, et al. Application of adsorption technology on carbon capture[J]. Proceedings of the CSEE, 2019, 39(suppl. 1): 155-163. | |
[3] | 彭一宪. 精馏与低温提馏耦合—一种油田二氧化碳驱产出气回收新工艺[J]. 油气藏评价与开发, 2012, 2(3): 42-47. |
PENG Yixian. Coupling of distillation and low temperature stripping: A new output gas recovery technology in CO2 flooding process in oilfields[J]. Reservoir Evaluation and Development, 2012, 2(3): 42-47. | |
[4] | 张帅, 郅晓, 石信超, 等. 有机胺类CO2捕集吸收剂研究进展[J/OL]. 应用化工(2023-11-28)[2023-12-07]. https://doi.org/10.16581/j.cnki.issn1671-3206.20231128.007. |
ZHANG Shuai, ZHI Xiao, SHI Xinchao, et al. Research progress of organic amines for CO2 capture and absorption[J/OL]. Applied Chemical Industry(2023-11-28)[2023-12-07]. https://doi.org/10.16581/j.cnki.issn1671-3206.20231128.007. | |
[5] | 樊强, 许世森, 刘沅, 等. 基于IGCC的燃烧前CO2捕集技术应用与示范[J]. 中国电力, 50(5): 163-167. |
FAN Qiang, XU Shisen, LIU Yuan, et al. Application and demonstration of IGCC-based pre-Combustion CO2 Capture Technology[J]. Electric Power, 50(5): 163-167. | |
[6] | 费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离—分离技术面临的挑战与机遇[J]. 化工进展, 2005, 24(1): 1-4. |
FEI Weiyang, AI Ning, CHEN Jian. Capture and separation of greenhouse gases CO2: The challenge and opportunity for separation technology[J]. Chemical Industry and Engineering Progress, 2005, 24(1): 1-4. | |
[7] | 桂霞, 王陈魏, 云志, 等. 燃烧前 CO2捕集技术研究进展[J]. 化工进展, 2014, 33(7): 1895-1901. |
GUI Xia, WANG Chenwei, YUN Zhi, et al. Research progress of pre-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1895-1901. | |
[8] | 吉立鹏, 张丙龙, 曾卫民. 基于石灰窑回收CO2用于炼钢的关键技术分析[J]. 中国冶金, 2019, 29(3): 49-52. |
JI Lipeng, ZHANG Binglong, ZENG Weimin. Analysis on key technologies of CO2 recovery from lime kiln for steelmaking[J]. China Metallurgy, 2019, 29(3): 49-52. | |
[9] | 李蒙. 以低温甲醇与聚醇醚为溶剂的工业气净化工艺对比[J]. 能源化工, 2016, 37(5): 71-76. |
LI Meng. Comparison of rectisol and selexol processes in gas purification[J]. Energy Chemical Industry, 2016, 37(5): 71-76. | |
[10] |
刘丽影, 宫赫, 王哲, 等. 捕集高湿烟气中CO2的变压吸附技术[J]. 化学进展, 2018, 30(6): 872-878.
doi: 10.7536/PC170921 |
LIU Liying, GONG He, WANG Zhe, et al. Application of pressure swing adsorption technology to capture CO2 in highly humid flue gas[J]. Progress in Chemistry, 2018, 30(6): 872-878.
doi: 10.7536/PC170921 |
|
[11] |
柳康, 许世森, 李广宇, 等. 基于整体煤气化联合循环的燃烧前 CO2捕集工艺及系统分析[J]. 化工进展, 2018, 37(12): 4897-4907.
doi: 10.16085/j.issn.1000-6613.2017-2632 |
LIU Kang, XU Shisen, LI Guangyu, et al. Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4897-4907.
doi: 10.16085/j.issn.1000-6613.2017-2632 |
|
[12] |
ROSS M B, DeLUNA P, LI Y F, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019, 2(8): 648-658.
doi: 10.1038/s41929-019-0306-7 |
[13] |
RONDA-LLORET M, ROTHENBERG G, SHIJU N R. A critical look at direct catalytic hydrogenation of carbon dioxide to olefins[J]. Chemsuschem, 2019, 12(17): 3896-3914.
doi: 10.1002/cssc.v12.17 |
[14] |
RIAZ A, ZAHEDI G, KLEMEŠ J J. A review of cleaner production methods for the manufacture of methanol[J]. Journal of Cleaner Production, 2013, 57: 19-37.
doi: 10.1016/j.jclepro.2013.06.017 |
[15] |
SHUKLA K, SRIVASTAVA V C. Synthesis of organic carbonates from alcoholysis of urea: A Review[J]. Catalysis Reviews, 2017, 59(1): 1-43.
doi: 10.1080/01614940.2016.1263088 |
[16] | SUN W H, JIANG B, ZHANG Y, et al. Enabling the biosynthesis of malic acid in lactococcus lactis by establishing the reductive TCA pathway and promoter engineering[J]. Biochemical Engineering Journal, 2020, 31(161): 10645. |
[17] | 白振敏, 刘慧宏, 陈科宇, 等. 二氧化碳化学转化技术研究进展[J]. 山东化工, 2018, 47(11): 70-72. |
BAI Zhenmin, LIU Huihong, CHEN Keyu, et al. Recent progress on chemical conversion of carbon dioxide[J]. Shandong Chemical Industry, 2018, 47(11): 70-72. | |
[18] | 赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(增刊1): 524-535. |
ZHAO Jinbo, BIAN Fengmin. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(suppl. 1): 524-535. | |
[19] |
包炜军, 赵红涛, 李会泉, 等. 磷石膏加压碳酸化转化过程中平衡转化率分析[J]. 化工学报, 2017, 68(3): 1155-1162.
doi: 10.11949/j.issn.0438-1157.20161290 |
BAO Weijun, ZHAO Hongtao, LI Huiquan, et al. Equilibrium conversion analysis of pressurized carbonation with phosphogypsum[J]. CIESC Journal, 2017, 68(3): 1155-1162.
doi: 10.11949/j.issn.0438-1157.20161290 |
|
[20] | 陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487. |
CHEN Qianqian, GU Yu, TANG Zhiyong, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 478-487. | |
[21] |
陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020.
doi: 10.16085/j.issn.1000-6613.2020-0841 |
CHEN Songsong, ZHANG Guoshuai, HUO Feng, et al. Market and technology development trends of coal-based bulk chemicals[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5009-5020.
doi: 10.16085/j.issn.1000-6613.2020-0841 |
|
[22] |
陈为, 魏伟, 孙予罕. 二氧化碳光电催化转化利用研究进展[J]. 中国科学(化学), 2017, 47(11): 1251-1261.
doi: 10.1360/N032017-00092 |
CHEN Wei, WEI Wei, SUN Yuhan. Recent progress in photoelectrocatalytic conversion of carbon dioxide[J]. Scientia Sinica Chimica, 2017, 47(11): 1251-1261.
doi: 10.1360/N032017-00092 |
|
[23] |
贾晨喜, 邵敬爱, 白小薇, 等. 二氧化碳加氢制甲醇铜基催化剂性能的研究进展[J]. 化工进展, 2020, 39(9): 3658-3668.
doi: 10.16085/j.issn.1000-6613.2019-1740 |
JIA Chenxi, SHAO Jing'ai, BAI Xiaowei, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668.
doi: 10.16085/j.issn.1000-6613.2019-1740 |
|
[24] | 梁斌, 王超, 岳海荣, 等. 天然钾长石-磷石膏矿化CO2联产硫酸钾过程评价[J]. 四川大学学报(工程科学版), 2014, 46(3): 168-174. |
LIANG bin, WANG chao, YUE Hairong, et al. Evaluation for the process of mineralization of CO2 using natural K-feldspar and phosphogypsum to produce sulfate potassium[J]. Journal of Sichuan university(Engineering Science Edition), 2014, 46(3): 168-174. | |
[25] | 倪泽南, 郭玉鑫, 张启俭. 二氧化碳加氢制甲醇和低碳烯烃研究进展[J]. 应用化工, 2023, 52(8): 2443-2447. |
NI Zenan, GUO Yuxin, ZHANG Qijian. Research progress in hydrogenation of carbon dioxide to methanol and light alkenes[J]. Applied Chemical Industry, 2023, 52(8): 2443-2447. | |
[26] | 赵玉龙, 杨勃, 曹成, 等. 盐水层CO2封存潜力评价及适应性评价方法研究进展[J]. 油气藏评价与开发, 2023, 13(4): 484-494. |
ZHAO Yulong, YANG Bo, CAO cheng, et al. Research progress of evaluation of CO2 storage potential and suitability assessment indexes in saline aquifers[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 484-494. | |
[27] | 郭平, 张万博, 陈馥, 等. 降低CO2-原油最小混相压力的助混剂研究进展[J]. 油气藏评价与开发, 2022, 12(5): 726-733. |
GUO Ping, ZHANG Wanbo, CHEN Fu, et al. Research progress of assistants for reducing CO2-crude oil minimum miscible pressure[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 726-733. | |
[28] | 桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发, 2022, 12(5): 711-725. |
SANG Shuxun, LIU Shiqi, LU Shijian, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725. | |
[29] | 李阳, 黄文欢, 何应付, 等. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用[J]. 油气藏评价与开发, 2021, 11(6): 793-804. |
LI Yang, HUANG Wenhuan, HE Yingfu, et al. Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 793-804. | |
[30] | 计秉玉, 何应付. 中国石化低渗透油藏CO2驱油实践与认识[J]. 油气藏评价与开发, 2021, 11(6): 805-811. |
JI Bingyu, HE Yingfu. Practice and understanding about CO2 flooding in low permeability oil reservoirs by Sinopec[J]. Reservoir Evaluation and Development, 2021, 11(6): 805-811. | |
[31] | 常世彦, 郑丁乾, 付萌. 2℃/1.5℃温控目标下生物质能结合碳捕集与封存技术(BECCS)[J]. 全球能源互联网, 2019, 2(3): 277-287. |
CHANG Shiyan, ZHENG Dingqian, FU Meng. Bioenergy with carbon capture and storage(BECCS) in the pursuit of the 2 ℃/1.5 ℃ target[J]. Journal of Global Energy Interconnection, 2019, 2(3): 277-287. | |
[32] |
白宏山, 赵东亚, 田群宏, 等. CO2捕集、运输、驱油与封存全流程随机优化[J]. 化工进展, 2019, 38(11): 4911-4920.
doi: 10.16085/j.issn.1000-6613.2019-0347 |
BAI Hongshan, ZHAO Dongya, TIAN Qunhong, et al. Stochastic optimization of the whole process of CO2 capture,transportation,utilization and sequestration[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4911-4920.
doi: 10.16085/j.issn.1000-6613.2019-0347 |
|
[33] | 辛艳萍. 中国油气管道技术现状与发展趋势分析[J]. 天然气与石油, 2020, 38(2): 26-31. |
XIN Yanping. Current situation and development trend of oil and gas pipeline technology in China[J]. Natural Gas and Oil, 2020, 38(2): 26-31. | |
[34] | 黄晶. 中国碳捕集利用与封存技术评估报告[M]. 北京: 科学出版社, 2021. |
HUANG Jing. Assessment report on carbon capture, utilization and storage technology in China[M]. Beijing: Science Press, 2021. | |
[35] | 林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展[J]. 南方能源建设, 2020, 7(2): 14-19. |
LIN Haizhou, LUO Zhibin, PEI Aiguo, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen[J]. Southern Energy Construction, 2020, 7(2): 14-19. | |
[36] | 王利宁, 杨雷, 陈文颖, 等. 国家自主决定贡献的减排力度评价[J]. 气候变化研究进展, 2018, 14(6): 613-620. |
WANG Lining, YANG Lei, CHEN Wenyin, et al. Assessment of carbon reduction effect of the Nationally Determined Contributions[J]. Climate Change Research, 2018, 14(6): 613-620. |
[1] | 吴财芳,高彬,李清,陈贞龙. 气体水合物合成研究进展 [J]. 油气藏评价与开发, 2024, 14(2): 267-276. |
[2] | 何志勇,郭本帅,汪东,毛松柏,李忠于. CO2捕集和利用技术的应用与研发进展 [J]. 油气藏评价与开发, 2024, 14(1): 70-75. |
|