[1] |
陈健, 古共伟, 郜豫川. 我国变压吸附技术的工业应用现状及展望[J]. 化工进展, 1998, 17(1): 14-17.
|
|
CHEN Jian, GU Gongwei, GAO Yuchuan. Actuality and prospect of pressure swing adsorption application in industry[J]. Chemical Industry and Engineering Progress, 1998, 17(1): 14-17.
|
[2] |
陈旭, 杜涛, 李刚. 吸附工艺在碳捕集中的应用现状[J]. 中国电机工程学报, 2019, 39(增刊1): 155-163.
|
|
CHEN Xu, DU Tao, LI Gang, et al. Application of adsorption technology on carbon capture[J]. Proceedings of the CSEE, 2019, 39(suppl. 1): 155-163.
|
[3] |
彭一宪. 精馏与低温提馏耦合—一种油田二氧化碳驱产出气回收新工艺[J]. 油气藏评价与开发, 2012, 2(3): 42-47.
|
|
PENG Yixian. Coupling of distillation and low temperature stripping: A new output gas recovery technology in CO2 flooding process in oilfields[J]. Reservoir Evaluation and Development, 2012, 2(3): 42-47.
|
[4] |
张帅, 郅晓, 石信超, 等. 有机胺类CO2捕集吸收剂研究进展[J/OL]. 应用化工(2023-11-28)[2023-12-07]. https://doi.org/10.16581/j.cnki.issn1671-3206.20231128.007.
|
|
ZHANG Shuai, ZHI Xiao, SHI Xinchao, et al. Research progress of organic amines for CO2 capture and absorption[J/OL]. Applied Chemical Industry(2023-11-28)[2023-12-07]. https://doi.org/10.16581/j.cnki.issn1671-3206.20231128.007.
|
[5] |
樊强, 许世森, 刘沅, 等. 基于IGCC的燃烧前CO2捕集技术应用与示范[J]. 中国电力, 50(5): 163-167.
|
|
FAN Qiang, XU Shisen, LIU Yuan, et al. Application and demonstration of IGCC-based pre-Combustion CO2 Capture Technology[J]. Electric Power, 50(5): 163-167.
|
[6] |
费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离—分离技术面临的挑战与机遇[J]. 化工进展, 2005, 24(1): 1-4.
|
|
FEI Weiyang, AI Ning, CHEN Jian. Capture and separation of greenhouse gases CO2: The challenge and opportunity for separation technology[J]. Chemical Industry and Engineering Progress, 2005, 24(1): 1-4.
|
[7] |
桂霞, 王陈魏, 云志, 等. 燃烧前 CO2捕集技术研究进展[J]. 化工进展, 2014, 33(7): 1895-1901.
|
|
GUI Xia, WANG Chenwei, YUN Zhi, et al. Research progress of pre-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1895-1901.
|
[8] |
吉立鹏, 张丙龙, 曾卫民. 基于石灰窑回收CO2用于炼钢的关键技术分析[J]. 中国冶金, 2019, 29(3): 49-52.
|
|
JI Lipeng, ZHANG Binglong, ZENG Weimin. Analysis on key technologies of CO2 recovery from lime kiln for steelmaking[J]. China Metallurgy, 2019, 29(3): 49-52.
|
[9] |
李蒙. 以低温甲醇与聚醇醚为溶剂的工业气净化工艺对比[J]. 能源化工, 2016, 37(5): 71-76.
|
|
LI Meng. Comparison of rectisol and selexol processes in gas purification[J]. Energy Chemical Industry, 2016, 37(5): 71-76.
|
[10] |
刘丽影, 宫赫, 王哲, 等. 捕集高湿烟气中CO2的变压吸附技术[J]. 化学进展, 2018, 30(6): 872-878.
doi: 10.7536/PC170921
|
|
LIU Liying, GONG He, WANG Zhe, et al. Application of pressure swing adsorption technology to capture CO2 in highly humid flue gas[J]. Progress in Chemistry, 2018, 30(6): 872-878.
doi: 10.7536/PC170921
|
[11] |
柳康, 许世森, 李广宇, 等. 基于整体煤气化联合循环的燃烧前 CO2捕集工艺及系统分析[J]. 化工进展, 2018, 37(12): 4897-4907.
doi: 10.16085/j.issn.1000-6613.2017-2632
|
|
LIU Kang, XU Shisen, LI Guangyu, et al. Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4897-4907.
doi: 10.16085/j.issn.1000-6613.2017-2632
|
[12] |
ROSS M B, DeLUNA P, LI Y F, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019, 2(8): 648-658.
doi: 10.1038/s41929-019-0306-7
|
[13] |
RONDA-LLORET M, ROTHENBERG G, SHIJU N R. A critical look at direct catalytic hydrogenation of carbon dioxide to olefins[J]. Chemsuschem, 2019, 12(17): 3896-3914.
doi: 10.1002/cssc.v12.17
|
[14] |
RIAZ A, ZAHEDI G, KLEMEŠ J J. A review of cleaner production methods for the manufacture of methanol[J]. Journal of Cleaner Production, 2013, 57: 19-37.
doi: 10.1016/j.jclepro.2013.06.017
|
[15] |
SHUKLA K, SRIVASTAVA V C. Synthesis of organic carbonates from alcoholysis of urea: A Review[J]. Catalysis Reviews, 2017, 59(1): 1-43.
doi: 10.1080/01614940.2016.1263088
|
[16] |
SUN W H, JIANG B, ZHANG Y, et al. Enabling the biosynthesis of malic acid in lactococcus lactis by establishing the reductive TCA pathway and promoter engineering[J]. Biochemical Engineering Journal, 2020, 31(161): 10645.
|
[17] |
白振敏, 刘慧宏, 陈科宇, 等. 二氧化碳化学转化技术研究进展[J]. 山东化工, 2018, 47(11): 70-72.
|
|
BAI Zhenmin, LIU Huihong, CHEN Keyu, et al. Recent progress on chemical conversion of carbon dioxide[J]. Shandong Chemical Industry, 2018, 47(11): 70-72.
|
[18] |
赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(增刊1): 524-535.
|
|
ZHAO Jinbo, BIAN Fengmin. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(suppl. 1): 524-535.
|
[19] |
包炜军, 赵红涛, 李会泉, 等. 磷石膏加压碳酸化转化过程中平衡转化率分析[J]. 化工学报, 2017, 68(3): 1155-1162.
doi: 10.11949/j.issn.0438-1157.20161290
|
|
BAO Weijun, ZHAO Hongtao, LI Huiquan, et al. Equilibrium conversion analysis of pressurized carbonation with phosphogypsum[J]. CIESC Journal, 2017, 68(3): 1155-1162.
doi: 10.11949/j.issn.0438-1157.20161290
|
[20] |
陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487.
|
|
CHEN Qianqian, GU Yu, TANG Zhiyong, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 478-487.
|
[21] |
陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020.
doi: 10.16085/j.issn.1000-6613.2020-0841
|
|
CHEN Songsong, ZHANG Guoshuai, HUO Feng, et al. Market and technology development trends of coal-based bulk chemicals[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5009-5020.
doi: 10.16085/j.issn.1000-6613.2020-0841
|
[22] |
陈为, 魏伟, 孙予罕. 二氧化碳光电催化转化利用研究进展[J]. 中国科学(化学), 2017, 47(11): 1251-1261.
doi: 10.1360/N032017-00092
|
|
CHEN Wei, WEI Wei, SUN Yuhan. Recent progress in photoelectrocatalytic conversion of carbon dioxide[J]. Scientia Sinica Chimica, 2017, 47(11): 1251-1261.
doi: 10.1360/N032017-00092
|
[23] |
贾晨喜, 邵敬爱, 白小薇, 等. 二氧化碳加氢制甲醇铜基催化剂性能的研究进展[J]. 化工进展, 2020, 39(9): 3658-3668.
doi: 10.16085/j.issn.1000-6613.2019-1740
|
|
JIA Chenxi, SHAO Jing'ai, BAI Xiaowei, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668.
doi: 10.16085/j.issn.1000-6613.2019-1740
|
[24] |
梁斌, 王超, 岳海荣, 等. 天然钾长石-磷石膏矿化CO2联产硫酸钾过程评价[J]. 四川大学学报(工程科学版), 2014, 46(3): 168-174.
|
|
LIANG bin, WANG chao, YUE Hairong, et al. Evaluation for the process of mineralization of CO2 using natural K-feldspar and phosphogypsum to produce sulfate potassium[J]. Journal of Sichuan university(Engineering Science Edition), 2014, 46(3): 168-174.
|
[25] |
倪泽南, 郭玉鑫, 张启俭. 二氧化碳加氢制甲醇和低碳烯烃研究进展[J]. 应用化工, 2023, 52(8): 2443-2447.
|
|
NI Zenan, GUO Yuxin, ZHANG Qijian. Research progress in hydrogenation of carbon dioxide to methanol and light alkenes[J]. Applied Chemical Industry, 2023, 52(8): 2443-2447.
|
[26] |
赵玉龙, 杨勃, 曹成, 等. 盐水层CO2封存潜力评价及适应性评价方法研究进展[J]. 油气藏评价与开发, 2023, 13(4): 484-494.
|
|
ZHAO Yulong, YANG Bo, CAO cheng, et al. Research progress of evaluation of CO2 storage potential and suitability assessment indexes in saline aquifers[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 484-494.
|
[27] |
郭平, 张万博, 陈馥, 等. 降低CO2-原油最小混相压力的助混剂研究进展[J]. 油气藏评价与开发, 2022, 12(5): 726-733.
|
|
GUO Ping, ZHANG Wanbo, CHEN Fu, et al. Research progress of assistants for reducing CO2-crude oil minimum miscible pressure[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 726-733.
|
[28] |
桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发, 2022, 12(5): 711-725.
|
|
SANG Shuxun, LIU Shiqi, LU Shijian, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725.
|
[29] |
李阳, 黄文欢, 何应付, 等. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用[J]. 油气藏评价与开发, 2021, 11(6): 793-804.
|
|
LI Yang, HUANG Wenhuan, HE Yingfu, et al. Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 793-804.
|
[30] |
计秉玉, 何应付. 中国石化低渗透油藏CO2驱油实践与认识[J]. 油气藏评价与开发, 2021, 11(6): 805-811.
|
|
JI Bingyu, HE Yingfu. Practice and understanding about CO2 flooding in low permeability oil reservoirs by Sinopec[J]. Reservoir Evaluation and Development, 2021, 11(6): 805-811.
|
[31] |
常世彦, 郑丁乾, 付萌. 2℃/1.5℃温控目标下生物质能结合碳捕集与封存技术(BECCS)[J]. 全球能源互联网, 2019, 2(3): 277-287.
|
|
CHANG Shiyan, ZHENG Dingqian, FU Meng. Bioenergy with carbon capture and storage(BECCS) in the pursuit of the 2 ℃/1.5 ℃ target[J]. Journal of Global Energy Interconnection, 2019, 2(3): 277-287.
|
[32] |
白宏山, 赵东亚, 田群宏, 等. CO2捕集、运输、驱油与封存全流程随机优化[J]. 化工进展, 2019, 38(11): 4911-4920.
doi: 10.16085/j.issn.1000-6613.2019-0347
|
|
BAI Hongshan, ZHAO Dongya, TIAN Qunhong, et al. Stochastic optimization of the whole process of CO2 capture,transportation,utilization and sequestration[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4911-4920.
doi: 10.16085/j.issn.1000-6613.2019-0347
|
[33] |
辛艳萍. 中国油气管道技术现状与发展趋势分析[J]. 天然气与石油, 2020, 38(2): 26-31.
|
|
XIN Yanping. Current situation and development trend of oil and gas pipeline technology in China[J]. Natural Gas and Oil, 2020, 38(2): 26-31.
|
[34] |
黄晶. 中国碳捕集利用与封存技术评估报告[M]. 北京: 科学出版社, 2021.
|
|
HUANG Jing. Assessment report on carbon capture, utilization and storage technology in China[M]. Beijing: Science Press, 2021.
|
[35] |
林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展[J]. 南方能源建设, 2020, 7(2): 14-19.
|
|
LIN Haizhou, LUO Zhibin, PEI Aiguo, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen[J]. Southern Energy Construction, 2020, 7(2): 14-19.
|
[36] |
王利宁, 杨雷, 陈文颖, 等. 国家自主决定贡献的减排力度评价[J]. 气候变化研究进展, 2018, 14(6): 613-620.
|
|
WANG Lining, YANG Lei, CHEN Wenyin, et al. Assessment of carbon reduction effect of the Nationally Determined Contributions[J]. Climate Change Research, 2018, 14(6): 613-620.
|