[1] |
施雅风. 全球和中国变暖特征及未来趋势[J]. 自然灾害学报, 1996, 5(2): 5-14.
|
|
SHI Yafeng. Features and tendency of global warming and its implications for China[J]. Journal of Natural Disasters, 1996, 5(2): 5-14.
|
[2] |
王嘉豪, 黄季夏, 杨林生, 等. 环北极地区自然灾害多尺度时空格局分析[J]. 灾害学, 2023, 38(2): 226-234.
|
|
WANG Jiahao, HUANG Jixia, YANG Linsheng, et al. Multi-scale temporal and spatial pattern analysis of natural disasters in the circum-Arctic region[J]. Journal of Catastrophology, 2023, 38(2): 226-234.
|
[3] |
AALST M K V. The impacts of climate change on the risk of natural disasters[J]. Disasters, 2010, 30(1): 5-18.
doi: 10.1111/disa.2006.30.issue-1
|
[4] |
杨美娟. 欧盟温室气体减排政策的发展及其成效[D]. 青岛: 中国海洋大学, 2012.
|
|
YANG Meijuan. The development and effection of European Union's policy on reducing greenhouse gas emission[D]. Qingdao: Ocean University of China, 2012.
|
[5] |
HAUGEN H A, ELDRUP N, BERNSTONE C, et al. Options for transporting CO2 from coal fired power plants case Denmark[J]. Energy Procedia, 2009, 1(1): 1665-1672.
doi: 10.1016/j.egypro.2009.01.218
|
[6] |
HASAN M M F, ZANTYE M S, KAZI M K. Challenges and opportunities in carbon capture,utilization and storage: A process systems engineering perspective[J]. Computers & Chemical Engineering, 2022, 166: 107925.
doi: 10.1016/j.compchemeng.2022.107925
|
[7] |
MCCOY S T, RUBIN E S. An engineering-economic model of pipeline transport of CO2, with application to carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(2): 219-229.
doi: 10.1016/S1750-5836(07)00119-3
|
[8] |
顾永正, 王天堃, 黄艳, 等. 燃煤电厂二氧化碳捕集利用与封存技术及工程应用[J]. 洁净煤技术, 2023, 29(4): 98-108.
|
|
GU Yongzheng, WANG Tiankun, HUANG Yan, et al. Carbon dioxide capture, utilization and storage technology and engineering application for coal-fired power plants[J]. Clean Coal Technology, 2023, 29(4): 98-108.
|
[9] |
费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离——分离技术面临的挑战与机遇[J]. 化工进展, 2005, 24(1): 1-4.
|
|
FEI Weiyang, AI Ning, CHEN Jian. Capture and separation of greenhouse gases CO2: The challenge and opportunity for separation technology[J]. Chemical Industry and Engineering Progress, 2005, 24(1): 1-4.
|
[10] |
韩学义. 电力行业二氧化碳捕集、利用与封存现状与展望[J]. 中国资源综合利用, 2020, 38(2): 110-117.
|
|
HAN Xueyi. Current situation and prospect of carbon dioxide capture, utilization and storage in electric power industry[J]. China Resources Comprehensive Utilization, 2020, 38(2):110-117.
|
[11] |
王喜平, 唐荣. 燃煤电厂碳捕集、利用与封存商业模式与政策激励研究[J]. 热力发电, 2022, 51(8): 29-41.
|
|
WANG Xiping, TANG Rong. Research on business model and policy incentives for carbon capture, utilization and storage in coalfired power plants[J]. Thermal Power Generation, 2022, 51(8): 29-41.
|
[12] |
李娜娜, 赵晏强, 秦阿宁, 等. 国际碳捕集、利用与封存科技战略与科技发展态势分析[J]. 热力发电, 2022, 51(10): 19-27.
|
|
LI Nana, ZHAO Yanqiang, QIN Aning, et al. Analysis of international carbon capture, utilization and storage strategy and scientific development trend[J]. Thermal Power Generation, 2022, 51(10): 19-27.
|
[13] |
桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发, 2022, 12(5): 711-725.
|
|
SANG Shuxun, LIU Shiqi, LU Shijian, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725.
|
[14] |
张绍辉, 王凯, 王玲, 等. CO2驱注采工艺的应用与发展[J]. 石油钻采工艺, 2016, 38(6): 869-875.
|
|
ZHANG Shaohui, WANG Kai, WANG Ling, et al. Development and application of CO2 flooding[J]. Oil Drilling & Production Technology, 2016, 38(6): 869-875.
|
[15] |
刘建新, 田启忠, 张瑞霞, 等. 耐CO2腐蚀油井管材的选用[J]. 腐蚀科学与防护技术, 2012, 24(1): 77-78.
|
|
LIU Jianxin, TIAN Qizhong, ZHANG Ruixia, et al. Selection of CO2 resistant oil well tubing[J]. Corrosion Science and Protection Technology, 2012, 24(1): 77-78.
|
[16] |
关宏业. CO2驱配套采油工艺设计及问题的解决思路[J]. 内蒙古石油化工, 2013, 23(22): 48-50.
|
|
GUAN Hongye. Design of CO2 flooding supporting oil recovery process and problem-solving ideas[J]. Inner Mongolia Petrochemical Industry, 2013, 23(22): 48-50.
|
[17] |
熊涛. 榆树林油田CO2驱采油配套工艺[J]. 油气田地面工程, 2013, 23(5): 49.
|
|
XIONG Tao. CO2 flooding oil recovery supporting technology in Yushulin Oilfield[J]. Oil-Gas Field Surface Engineering, 2013, 23(5): 49.
|
[18] |
俞凯, 刘伟, 陈祖华, 等. 陆相低渗油藏 CO2混相驱技术[M]. 北京: 中国石化出版社, 2015.
|
|
YU Kai, LIU Wei, CHEN Zuhua, et al. CO2 miscible flooding technology for low-permeability terrestrial reservoirs[M]. Beijing: China Petrochemical Press, 2015.
|
[19] |
张燕芬, 刘鹤鸣. 国内外油气井抗CO2腐蚀缓蚀剂的研究进展[J]. 石油和化工设备, 2007, 10(4): 53-57.
|
|
ZHANG Yanfen, LIU Heming. The research and developing situation of carbon dioxide corrosion inhibitor used for oil and gas field[J]. Petro & Chemical Equipment, 2007, 10(4): 53-57.
|
[20] |
王林海, 沈靖, 孙爱平. 南海西部某气田防CO2腐蚀缓蚀剂研发[J]. 全面腐蚀控制, 2010, 24(11): 21-25.
|
|
WANG Linhai, SHEN Jing, SUN Aiping. Anti-CO2 corrosion inhibitor development of a western South China Sea gas field[J]. Total Corrosion Control, 2010, 24(11): 21-25.
|
[21] |
舒作静, 刘志德, 谷坛. 气液两相缓蚀剂在油气田开发中的应用[J]. 石油与天然气化工, 2001, 30(4): 200-201.
|
|
SHU Zuojing, LIU Zhide, GU Tan. Application of gas-liquid two-phase corrosion inhibitors in oil and gas field development[J]. Chemical Engineering of Oil & Gas, 2001, 30(4): 200-201.
|
[22] |
CLAUSEN S, OOSTERKAMP A, STRØM K L. Depressurization of a 50 km long 24 inches CO2 pipeline[J]. Energy Procedia, 2012, 23: 256-265.
doi: 10.1016/j.egypro.2012.06.044
|
[23] |
WIEBE R, GADDY V L. Vapor phase composition of carbon dioxide-water mixtures at various temperatures and at pressures to 700 atmospheres[J]. Journal of the American Chemical Society, 1941, 63(2): 475-477.
doi: 10.1021/ja01847a030
|
[24] |
VESOVIC V, WAKEHAM W A, OLCHOWY G A, et al. The transport properties of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1990, 19(3): 763-808.
doi: 10.1063/1.555875
|
[25] |
吕家兴, 侯磊, 吴守志, 等. 含气体杂质超临界CO2管道输送特性研究[J]. 低碳化学与化工, 2020, 45(5): 77-82.
|
|
LU Jiaxing, HOU Lei, WU Shouzhi, et al. Research on impact of gas impurities on pipeline transportation characteristics of supercritical CO2[J]. Low-Carbon Chemistry and Chemical Engineering, 2020, 45(5): 77-82.
|
[26] |
BUIT L, AHMAD M, MALLON W, et al. CO2 EuroPipe study of the occurrence of free water in dense phase CO2, transport[J]. Energy Procedia, 2011, 4(22): 3056-3062.
doi: 10.1016/j.egypro.2011.02.217
|
[27] |
AURSAND P, HAMMER M, MUNKEJORD S T, et al. Pipeline transport of CO2 mixtures: Models for transient simulation[J]. International Journal of Greenhouse Gas Control, 2013, 15(3): 174-185.
doi: 10.1016/j.ijggc.2013.02.012
|
[28] |
MAHGEREFTEH H, BROWN S, MARTYNOV S. A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO2 pipelines[J]. Greenhouse Gases: Science and Technology, 2012, 2(5): 369-379.
doi: 10.1002/ghg.v2.5
|
[29] |
孔韦海, 艾志斌, 胡盼, 等. L320原油输送管道静置段的腐蚀机理[J]. 腐蚀与防护, 2019, 40(7): 502-506.
|
|
KONG Weihai, AI Zhibin, HU Pan, et al. Corrosion mechanism of the stationary section of L320 crude oil pipeline[J]. Corrosion and Protection, 2019, 40(7): 502-506.
|
[30] |
SIM S, COLE I S, CHOI Y S, et al. A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2, via steel pipelines for CCS purposes[J]. International Journal of Greenhouse Gas Control, 2014, 29(29): 185-199.
doi: 10.1016/j.ijggc.2014.08.010
|
[31] |
KING G G, KUMAR S. Designing CO2 transmission pipelines without crack arrestors[C]// Symposium on 2010 8th International Pipeline Conference, September 27-October 1, 2010, International Petroleum Technology Institute and the Pipeline Division, Calgary, Alberta. New York: ASME, 2010: 923-934.
|
[32] |
GALE J, DAVISON J. Transmission of CO2-safety and economic considerations[J]. Energy, 2004, 29(9): 1319-1328.
doi: 10.1016/j.energy.2004.03.090
|
[33] |
ZHAO Q, LI Y X, LI S L. Safety control on the chocking process of supercritical carbon dioxide pipeline[J]. Advances in Mechanical Engineering, 2014: 1-10.
|
[34] |
刘敏. 超临界二氧化碳管道输送瞬变特性研究[D]. 青岛: 中国石油大学(华东), 2015.
|
|
LIU Min. The transient characteristics of supercritical carbon dioxide pipelines[D]. Qingdao: China University of Petroleum(East China), 2015.
|
[35] |
吴其荣, 陶建国, 范宝成, 等. 燃煤电厂开展大规模碳捕集的技术路线选择及经济敏感性分析[J]. 热力发电, 2022, 51(10): 28-34.
|
|
WU Qirong, TAO Jianguo, FAN Baocheng, et al. Technical route selection and economic sensitivity analysis of large-scale carbon capture in coal-fired power plant[J]. Thermal Power Generation, 2022, 51(10): 28-34.
|