油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (1): 26-34.doi: 10.13809/j.cnki.cn32-1825/te.2024.01.004

• 方法理论 • 上一篇    下一篇

原油-CO2相互作用机理分子动力学模拟研究

李建山1,2(),高浩1,2(),鄢长灏1,2,王石头1,2,王亮亮3   

  1. 1.中国石油长庆油田分公司油气工艺研究院,陕西 西安 710018
    2.中国石油长庆油田分公司低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
    3.中国石油大学(华东)石油工程学院,山东 青岛 266580
  • 收稿日期:2022-11-18 出版日期:2024-02-26 发布日期:2024-03-05
  • 通讯作者: 高浩(1991—),男,博士,工程师,主要从事三次采油及提高采收技术研究。地址:陕西省西安市未央区明光路长庆油田油气工艺研究院,邮政编码:710018。E-mail:gaohao_cq@petrochina.com.cn
  • 作者简介:李建山(1975—),男,硕士,高级工程师,主要从事低渗透油藏压裂酸化增产技术及三次采油技术研究。地址:陕西省西安市未央区明光路长庆油田油气工艺研究院,邮政编码:710018。E-mail:lijians_cq@petrochina.com.cn
  • 基金资助:
    中国石油科学研究与技术开发项目“长庆油田低渗透油藏CO2驱油与埋存关键技术研究与应用”(2014E-36);中国石油科学研究与技术开发项目“二氧化碳规模化捕集、驱油与埋存全产业链关键技术研究及示范”(2021ZZ01)

Molecular dynamics simulation on interaction mechanisms of crude oil and CO2

LI Jianshan1,2(),GAO Hao1,2(),YAN Changhao1,2,WANG Shitou1,2,WANG Liangliang3   

  1. 1. Research Institute of Oil and Gas Technology, PetroChina Changqing Oilfield Company, Xi’an, Shaanxi 710018, China
    2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, PetroChina Changqing Oilfield Company, Xi’an, Shaanxi 710018, China
    3. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China
  • Received:2022-11-18 Online:2024-02-26 Published:2024-03-05

摘要:

CO2的众多驱油机理已经被广泛认同,但受油藏因素影响,不同油藏条件下CO2驱的效果差异较大。因此,需要进一步深化研究CO2与原油的微观相互作用机理,明确不同油藏条件下CO2的驱油方式,最大限度挖潜CO2驱的潜力。利用分子动力学模拟方法研究了组分、温度、压力对油滴-CO2相互作用的影响。求取动力学参数,量化表征油滴-CO2间的相互作用,厘清了不同条件下二者的微观相互作用规律。模拟结果显示,色散力是主导CO2-烷烃分子相互作用的主要作用能,二者相互作用主要包含两方面:一是CO2分子克服烷烃分子间的位阻作用向油滴内部溶解扩散,二是CO2分子对油滴外层分子的萃取吸引作用。随着烷烃分子链长减小、温度降低和压力增加,油滴溶解度参数和CO2配位数增加,油滴外层分子的弯曲度减小,二者的相互作用增强。研究结果认为,在温度较低、压力较高的轻质和中轻质油藏中,应尽可能地实现CO2混相驱和近混相驱,在温度较高、压力较低的中质和重质油藏中,应充分发挥CO2非混相驱的溶解降黏、膨胀原油体积和补充能量的优势。研究结果能够为室内研究和现场实施CO2驱油提供理论指导。

关键词: CO2驱油, 微观作用机理, 分子动力学模拟, 色散能, 溶解扩散

Abstract:

Numerous oil displacing mechanisms of CO2 have been widely recognized, but due to reservoir factors, the effectiveness of CO2 flooding varies significantly under different reservoir conditions. It is necessary to further deepen the research on the micro-interaction mechanisms between CO2 and crude oil, clarify the CO2 flooding mode under different reservoir conditions, and maximize the potential of CO2 flooding. Molecular dynamics simulation methods have been used to study the effects of components, temperature, and pressure on the interaction between oil droplets and CO2. The kinetic parameters were obtained to quantitatively characterize the oil droplets-CO2 interaction, clarifying the micro-interaction patterns under different conditions. The simulation results show that the dispersion force is the the main driving force of the interaction between CO2 and alkane molecules, which mainly includes two aspects: one is the dissolution and diffusion of CO2 molecules into the oil droplets by overcoming the steric hindrance between alkane molecules, and the other is the extraction attraction of CO2 molecules to the outer layer molecules of the oil droplets. As the chain length of alkane molecules decreases, the temperature decreases and the pressure increases, the solubility parameter of the oil droplets and the coordination number of CO2 increase, the curvature of the molecules in the outer layer of the oil droplets decreases, and the interaction between the two is enhanced. It is concluded that CO2 miscible and near-miscible flooding should be realised as much as possible in light and medium-light reservoirs with lower temperatures and higher pressures, while in medium and heavy reservoirs with higher temperatures and lower pressures, the advantages of CO2 non-miscible flooding in terms of dissolution viscosity reduction, crude oil volume expansion and energy replenishment should be fully exploited. The study results can provide theoretical guidance for laboratorial research and field application of CO2 flooding.

Key words: CO2 flooding, microscopic interaction mechanism, molecular dynamics simulation, dispersion force, dissolution and diffusion

中图分类号: 

  • TE357