油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (4): 529-540.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.002
束青林1(),魏超平2,6,于田田3,5,计秉玉4,张仲平3,5,郑万刚3,5
收稿日期:
2023-05-17
发布日期:
2024-09-10
出版日期:
2024-08-26
作者简介:
束青林(1966—),男,博士,正高级工程师,从事油田开发地质及提高采收率研究与管理工作。地址:山东省东营市东营区济南路258号,邮政编码:257000。E-mail: 基金资助:
SHU Qinglin1(),WEI Chaoping2,6,YU Tiantian3,5,JI Bingyu4,ZHANG Zhongping3,5,ZHENG Wangang3,5
Received:
2023-05-17
Online:
2024-09-10
Published:
2024-08-26
摘要:
稠油油藏是一种重要的战略资源,对保障国家能源安全起到重要的作用。国内外稠油开发主要有蒸汽吞吐、蒸汽驱、驱泄复合(SAGD)、火烧驱油4项技术,受技术适应性、成本高及对环境不友好的影响,其推广和运用存在一定局限性。胜利油田根据自身油藏特点,形成了薄层水平井、热化学复合和化学降黏3项新技术,拓展了开发技术界限,使稠油油藏开发的有效厚度界限低至2 m、油藏埋深为2 000 m、储层渗透率界限低至100×10-3 μm2。根据各项技术特点和矿场应用效果,建立了以技术适应性为基础的稠油新分类标准,把稠油油藏分为5大类,指导矿场稠油开发技术方向的选择。结合目前技术发展方向和新的形势要求,指出“多元热复合”“非热力开发”“纳米材料应用”将是稠油开发技术3个趋势。
中图分类号:
Qinglin SHU,Chaoping WEI,Tiantian YU, et al. Development technology progress of heavy oil and establishment and application practice of new classification standard: A case study of development of heavy oil in Shengli Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 529-540.
表1
胜利油田稠油分类方法"
分类 | 亚类 | 黏度①/(mPa·s) | 埋深/m | 有效厚度/m | 渗透率/10-3 μm2 | 对应开发技术 | 开发效果 |
---|---|---|---|---|---|---|---|
1类 | 中高渗厚层普通/特稠油 | ≤10 000 | ≤1 600 | ≥10 | ≥300 | 蒸汽驱 | 技术成熟、经济效益好 |
中高渗薄层普通/特稠油 | ≤3 000 | ≤1 600 | ≥2 | ≥300 | 蒸汽吞吐 | ||
2类 | 高渗特/超稠油 | ≤25 000 | ≤850 | ≥8 | ≥700 | SAGD | 技术成熟、经济效益好 |
3类 | 深层/薄层特超稠油 | ≤50 000 | ≤2 000 | ≥2 | ≥300 | 热化学 | 技术成熟、经济效益较好 |
4类 | 低效难采稠油② | ≤1 500 | ≤2 500 | ≥4 | ≥100 | 非热力 | 技术发展中、经济效益好 |
5类 | 热采后普通稠油 | ≤1 500 | ≤1 000 | ≥3 | ≥100 | 火烧驱油 | 技术发展中、经济效益不高 |
[1] | 马锋, 张光亚, 王红军, 等. 全球重油与油砂资源潜力、分布与勘探方向[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1042-1051. |
MA Feng, ZHANG Guangya, WANG Hongjun, et al. Potential, distribution and exploration direction of global heavy oil and oil sand resources[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1042-1051. | |
[2] | 于连东. 世界稠油资源的分布及其开采技术的现状与展望[J]. 特种油气藏, 2001, 8(2): 98-103. |
YU Liandong. The distribution of heavy oil resources in the world and the current status and prospects of their extraction technologies[J]. Special Oil & Gas Reservoirs, 2001, 8(2): 98-103. | |
[3] | 武毅. 辽河油田开发技术思考与建议[J]. 特种油气藏, 2018, 25(6): 96-100. |
WU Yi. Technical considerations and suggestions for the development of Liaohe Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(6): 96-100. | |
[4] | 熊彪, 张荷, 李浩哲, 等. 稠油开采技术及展望[J]. 化学工程与装备, 2016(2): 169-171. |
XIONG Biao, ZHANG He, LI Haozhe, et al. Heavy oil recovery technology and prospects[J]. Chemical Engineering & Equipment, 2016(2): 169-171. | |
[5] |
蒋琪, 游红娟, 潘竟军, 等. 稠油开采技术现状与发展方向初步探讨[J]. 特种油气藏, 2020, 27(6): 30-39.
doi: 10.3969/j.issn.1006-6535.2020.06.004 |
JIANG Qi, YOU Hongjuan, PAN Jingjun, et al. Preliminary discussion on current status and development direction of heavy oil recovery technologies[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 30-39.
doi: 10.3969/j.issn.1006-6535.2020.06.004 |
|
[6] | 袁士宝, 孙健, 宫宇宁, 等. 多层稠油油藏对向火驱开采方法研究[J]. 非常规油气, 2023, 10(2): 26-32. |
YUAN Shibao, SUN Jian, GONG Yuning, et al. Study on mining method of opposite fire flooding in multi-layer heavy oil reservoir[J]. Unconventional Oil & Gas, 2023, 10(2): 26-32. | |
[7] | 黄琴, 蔡晖, 桑丹, 等. 海上稠油油田水平井多轮蒸汽吞吐生产规律研究[J]. 非常规油气, 2023, 10(2): 76-79. |
HUANG Qin, CAI Hui, SANG Dan, et al. Study on development law of horizontal well multiple cyclic steam stimulation for offshore heavy oilfields[J]. Unconventional Oil & Gas, 2023, 10(2): 76-79. | |
[8] | 武毅, 李铁军, 赵洪岩. 辽河油田高效开发[M]. 北京: 石油工业出版社, 2017. |
WU Yi, LI Tiejun, ZHAO Hongyan. Efficient development of Liaohe Oilfield[M]. Beijing: Petroleum Industry Press, 2017. | |
[9] | 许鑫, 刘永建, 尚策, 等. 稠油油藏蒸汽驱提高热利用率研究[J]. 特种油气藏, 2019, 26(2): 112-116. |
XU Xin, LIU Yongjian, SHANG Ce, et al. Thermal utilization enhancement of steam-flooding in heavy oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 112-116. | |
[10] | 安洁. 胜利稠油开发技术及未来发展[J]. 中国石油和化工标准与质量, 2020, 40(17): 202-203. |
AN Jie. Shengli heavy oil development technology and future development[J]. China Petroleum and Chemical Standards and Quality, 2020, 40(17): 202-203. | |
[11] |
户昶昊. 中深层稠油油藏蒸汽驱技术研究进展与发展方向[J]. 特种油气藏, 2020, 27(6): 54-59.
doi: 10.3969/j.issn.1006-6535.2020.06.007 |
HU Changhao. Research progress and development direction of steam flooding technology for medium to deep heavy oil reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 54-59.
doi: 10.3969/j.issn.1006-6535.2020.06.007 |
|
[12] | 何万军, 鲍海娟, 马鸿, 等. 超稠油油藏小井距蒸汽吞吐转蒸汽驱先导试验[J]. 特种油气藏, 2014, 21(4): 130-133. |
HE Wanjun, BAO Haijuan, MA Hong, et al. Pilot of steam drive after huff and puff for ultra-Heavy oil reservoir with small well spacing[J]. Special Oil & Gas Reservoirs, 2014, 21(4): 130-133. | |
[13] | 李浩哲, 熊彪, 张荷, 等. 国外稠油油藏单井SAGD开发技术综述[J]. 天然气与石油, 2017, 35(1): 84-88. |
LI Haozhe, XIONG Biao, ZHANG He, et al. Technical review on the development of single-well SAGD in foreign heavy oil reservoirs[J]. Natural Gas and Oil, 2017, 35(1): 84-88. | |
[14] | 李苒, 陈掌星, 吴克柳, 等. 特超稠油SAGD高效开发技术研究综述[J]. 中国科学(技术科学), 2020, 50(6): 729-741. |
LI Ran, CHEN Zhangxing, WU Keliu, et al. Review on the effective recovery of SAGD production for extra and super heavy oil reservoirs[J]. SCIENTIA SINICA Technologica, 2020, 50(6): 729-741. | |
[15] | 杨钊. 稠油油藏火烧油层采油技术原理及其应用[M]. 北京: 中国石化出版社, 2015. |
YANG Zhao. The principle and application of in situ combustion Oil Recovery Technology in heavy oil reservoirs[M]. Beijing: China Petrochemical Press, 2015. | |
[16] | 徐克明, 刘永建, 刘其成. 火烧油层采油技术基础及其应用[M]. 北京: 石油工业出版社, 2015. |
XU Keming, LIU Yongjian, LIU Qicheng. Fundamentals and applications of in situ combustion oil recovery technology[M]. Beijing: Petroleum Industry Press, 2015. | |
[17] | 张方礼. 火烧油层技术综述[J]. 特种油气藏, 2011, 18(6): 1-5. |
ZHANG Fangli. An overview of in situ combustion technology[J]. Special Oil & Gas Reservoirs, 2011, 18(6): 1-5. | |
[18] | 孙焕泉. 水平井开发技术[M]. 北京: 石油工业出版社, 2012. |
SUN Huanquan. Horizontal well development technology[M]. Beijing: Petroleum Industry Press, 2012. | |
[19] | 张继国, 李安夏, 李兆敏, 等. 超稠油油藏HDCS强化采油技术[M]. 东营: 中国石油大学出版社, 2009. |
ZHANG Jiguo, LI Anxia, LI Zhaomin, et al. HDCS enhanced oil recovery technology for ultra heavy oil reservoirs[M]. Dongying: China University of Petroleum Press, 2009. | |
[20] | 陶磊, 李兆敏, 毕义泉, 等. 胜利油田深薄层超稠油多元复合开采技术[J]. 石油勘探与开发, 2010, 37(6): 732-736. |
TAO Lei, LI Zhaomin, BI Yiquan, et al. Multi-combination exploiting technique of ultra-heavy oil reservoirs with deep and thin layers in Shengli Oilfield[J]. Petroleum Exploration and Development, 2010, 37(6): 732-736. | |
[21] | 孙焕泉. 薄储层超稠油热化学复合采油方法与技术[J]. 石油与天然气地质, 2020, 41(5): 1100-1106. |
SUN Huanquan. Hybrid thermal chemical recovery of thin extra-heavy oil reservoirs[J]. Oil & Gas Geology, 2020, 41(5): 1100-1106. | |
[22] | 王金铸, 王学忠. 准西车排子地区浅薄层超稠油开发的难点与对策[J]. 断块油气田, 2012, 19(增刊1): 1-4. |
WANG Jinzhu, WANG Xuezhong. Development difficulties and countermeasures of shallow thin extra-heavy oil reservoir in Chepaizi Area in the western margin of Junggar Basin[J]. Fault-Block Oil & Gas Field, 2012, 19(suppl. 1): 1-4. | |
[23] | 王金铸, 王学忠, 刘凯, 等. 春风油田排601区块浅层超稠油HDNS技术先导试验效果评价[J]. 特种油气藏, 2011, 18(4): 59-62. |
WANG Jinzhu, WANG Xuezhong, LIU Kai, et al. Evaluation of HDNS pilot test for shallow ultra-heavy oil in the Pai 601 block of the Chunfeng oilfield[J]. Special Oil & Gas Reservoirs, 2011, 18(4): 59-62. | |
[24] | 王学忠, 王金铸, 乔明全. 水平井、氮气及降黏剂辅助蒸汽吞吐技术——以准噶尔盆地春风油田浅薄层超稠油为例[J]. 石油勘探与开发, 2013, 40(1): 97-102. |
WANG Xuezhong, WANG Jinzhu, QIAO Mingquan. Horizontal well, nitrogen and viscosity reducer assisted steam huff and puff technology: Taking super heavy oil in shallow and thin beds, Chunfeng Oilfield, Junggar Basin, NW China, as an example[J]. Petroleum Exploration and Development, 2013, 40(1): 97-102. | |
[25] | 刘晏飞, 唐亮, 熊海云, 等. 化学蒸汽驱不同温度区域的驱油特征[J]. 油气地质与采收率, 2015, 22(3): 115-118. |
LIU Yanfei, TANG Liang, XIONG Haiyun, et al. Characteristics of oil displacement in different temperature regions of chemical steam flooding[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(3): 115-118. | |
[26] | 唐亮. 稠油油藏化学复合蒸汽驱技术室内研究[J]. 油田化学, 2014, 31(1): 65-68. |
TANG Liang. Laboratory study of chemical combination steam flooding for heavy oil reservoir[J]. Oilfield Chemistry, 2014, 31(1): 65-68. | |
[27] | 赵燕, 吴光焕, 孙业恒. 泡沫辅助蒸汽驱矿场试验及效果[J]. 油气地质与采收率, 2017, 24(5): 106-110. |
ZHAO Yan, WU Guanghuan, SUN Yeheng. Field test and effect analysis of foam-assisted steam flooding[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5): 106-110. | |
[28] | 魏超平, 李伟忠, 吴光焕, 等. 稠油降黏剂驱提高采收率机理[J]. 油气地质与采收率, 2020, 27(2): 131-136. |
WEI Chaoping, LI Weizhong, WU Guanghuan, et al. EOR mechanism of viscosity reducer flooding in heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 131-136. | |
[29] | 郑万刚, 初伟, 崔文富, 等. 渗透降黏驱油剂提高采收率机理[J]. 油气地质与采收率, 2021, 28(6): 129-134. |
ZHENG Wangang, CHU Wei, CUI Wenfu, et al. Enhanced oil recovery mechanism of permeable viscosity-reducing oil displacement agent[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 129-134. | |
[30] | 束青林, 郑万刚, 张仲平, 等. 低效热采/水驱稠油转化学降黏复合驱技术[J]. 油气地质与采收率, 2021, 28(6): 12-21. |
SHU Qinglin, ZHENG Wangang, ZHANG Zhongping, et al. Chemical viscosity reduction compound flooding technology for low-efficiency thermal recovery/water flooding heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 12-21. | |
[31] | 王勇. 烟道气辅助SAGD提高稠油开发效果研究[D]. 青岛: 中国石油大学, 2010. |
WANG Yong. Research on improving the development effect of heavy oil by assisting SAGD with flue gas[D]. Qingdao: China University of Petroleum, 2010. | |
[32] | 李兆敏, 王勇, 李宾飞, 等. 烟道气在超稠油中的溶解特性[J]. 特种油气藏, 2010, 17(5): 84-86. |
LI Zhaomin, WANG Yong, LI Binfei, et al. Dissolubility of flue gas in super-heavy oil[J]. Special Oil & Gas Reservoirs, 2010, 17(5): 84-86. | |
[33] | 林日亿, 李魏, 李兆敏, 等. 烟气-蒸汽辅助重力泄油模拟技术[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 136-140. |
LIN Riyi, LI Wei, LI Zhaomin, et al. Numerical simulation technology of flue gas-steam assisted gravity drainage[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(5): 136-140. | |
[34] | 张超, 李兆敏, 王弘宇, 等. 烟道气在风城稠油油藏中的溶解特性研究[J]. 西安石油大学学报(自然科学版), 2013, 28(6): 90-94. |
ZHANG Chao, LI Zhaomin, WANG Hongyu, et al. Study on dissolubility of flue gas in heavy oil in Fengcheng Oil Field[J]. Journal of Xi'an Shiyou University(Natural Science), 2013, 28(6): 90-94. | |
[35] | 李晨, 苏路, 李秋叶, 等. 稠油催化降黏技术开发研究进展[J]. 化学研究, 2015, 26(3): 323-330. |
LI Chen, SU Lu, LI Qiuye, et al. The development of viscosity reduction of heavy oil by catalytic techniques[J]. Chemical Research, 2015, 26(3): 323-330. | |
[36] | 史建民, 吴志连, 王耀国. 稠油水热催化裂解降黏研究进展[J]. 广州化工, 2021, 49(6): 11-13. |
SHI Jianmin, WU Zhilian, WANG Yaoguo. Research progress in viscosity reduction through hydrothermal catalytic cracking of heavy oil[J]. Guangzhou Chemical Industry, 2021, 49(6): 11-13. | |
[37] | 成浪. 稠油催化改质降黏催化剂的合成与性能评价[D]. 乌鲁木齐: 新疆大学, 2019. |
CHENG Lang. Synthesis and performance evaluation of heavy oil catalytic upgrading and viscosity reduction catalysts[D]. Urumqi: Xinjiang University, 2019. | |
[38] | 张丽慧, 葛明兰, 李向博, 等. 超稠油催化改质降黏研究[J]. 科学技术与工程, 2014, 14(36): 171-175. |
ZHANG Lihui, GE Minglan, LI Xiangbo, et al. Upgrading and visbreaking of ultra-heavy crude oil with catalyst[J]. Science Technology and Engineering, 2014, 14(36): 171-175. | |
[39] |
吴永彬, 刘雪琦, 杜宣, 等. 超稠油油藏溶剂辅助重力泄油机理物理模拟实验[J]. 石油勘探与开发, 2020, 47(4): 765-771.
doi: 10.11698/PED.2020.04.13 |
WU Yongbin, LIU Xueqi, DU Xuan, et al. Scaled physical experiments on drainage mechanisms of solvent-expanded SAGD in super-heavy oil reservoirs[J]. Petroleum Exploration and Development, 2020, 47(4): 765-771.
doi: 10.11698/PED.2020.04.13 |
|
[40] | 罗健, 李秀峦, 王红庄, 等. 溶剂辅助蒸汽重力泄油技术研究综述[J]. 石油钻采工艺, 2014, 36(3): 106-110. |
LUO Jian, LI Xiuluan, WANG Hongzhuang, et al. Research on ES-SAGD technology[J]. Oil Drilling & Production Technology, 2014, 36(3): 106-110. | |
[41] |
崔传智, 郑文乾, 祝仰文, 等. 蒸汽吞吐后转降黏化学驱加密井井位优化方法[J]. 石油学报, 2020, 41(12): 1643-1648.
doi: 10.7623/syxb202012016 |
CUI Chuanzhi, ZHENG Wenqian, ZHU Yangwen, et al. A method for optimizing the location of infill wells exploited by viscosity reduction chemical flooding after steam huff and puff stimulation[J]. Acta Petrolei Sinica, 2020, 41(12): 1643-1648.
doi: 10.7623/syxb202012016 |
|
[42] | 胡渤, 郑文乾, 祝仰文, 等. 稠油油藏降黏化学驱注入方式优化[J]. 油气地质与采收率, 2020, 27(6): 91-99. |
HU Bo, ZHENG Wenqian, ZHU Yangwen, et al. Optimization of injection methods for viscosity reducing chemical flooding in heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 91-99. | |
[43] | 束青林, 胡婧, 林军章, 等. “益生菌”提高难采稠油采收率机理与技术实践[J]. 油气地质与采收率, 2022, 29(4): 76-82. |
SHU Qinglin, HU Jing, LIN Junzhang, et al. Mechanism and technical practice of enhancing oil recovery of hard-to-recover heavy oil reservoirs with probiotics[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 76-82. | |
[44] | 孙刚正, 胡婧, 刘涛, 等. 油藏物性及采出程度对内源微生物驱油效果的影响[J]. 油气地质与采收率, 2021, 28(2): 41-48. |
SUN Gangzheng, HU Jing, LIU Tao, et al. Effects of reservoir physical properties and recoveries on oil displacement of endogenous microbes[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 41-48. | |
[45] | 郭德明, 潘毅, 孙扬, 等. 低渗稠油油藏降黏剂-CO2复合驱提高采收率机理研究[J]. 油气藏评价与开发, 2022, 12(5): 794-802. |
GUO Deming, PAN Yi, SUN Yang, et al. EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 794-802. | |
[46] | 王舒华. 超临界CO2对原油性质影响规律研究[D]. 青岛: 中国石油大学(华东), 2014. |
WANG Shuhua. Research on the influence of supercritical CO2 on the properties of crude oil[D]. Qingdao: China University of Petroleum (East China), 2014. | |
[47] | 于田田, 郝婷婷, 翟勇. 增溶剂作用下二氧化碳在稠油中的溶解机理[J]. 油田化学, 2022, 39(3): 449-454. |
YU Tiantian, HAO Tingting, ZHAI Yong. Dissolution mechanism of carbon dioxide in heavy oil with 1,2-dimethoxyethane as solubilizer[J]. Oilfield Chemistry, 2022, 39(3): 449-454. | |
[48] | 徐德龙, 高金彪, 李超, 等. 超声波应用于稠油降黏的实验研究[J]. 声学技术, 2020, 39(6): 682-685. |
XU Delong, GAO Jinbiao, LI Chao, et al. Experimental study of heavy oil viscosity reduction by using ultrasonic wave[J]. Technical Acoustics, 2020, 39(6): 682-685. | |
[49] | 张达礼, 戴咏川. 超声波对重质油黏度和黏温性能的影响[J]. 当代化工, 2011, 40(9): 885-887. |
ZHANG Dali, DAI Yongchuan. Influence of ultrasound on viscosity and viscosity-temperature property of heavy oil[J]. Contemporary Chemical Industry, 2011, 40(9): 885-887. | |
[50] | 赵法军, 王广昀, 哈斯, 等. 国内外稠油和沥青VAPEX技术发展现状与分析[J]. 化工进展, 2012, 31(2): 304-309. |
ZHAO Fajun, WANG Guangyun, HA Si, et al. Development of vapor extraction technique in heavy oil and bitumen recovery[J]. Chemical Industry and Engineering Progress, 2012, 31(2): 304-309. | |
[51] | 吴景春, 石芳, 赵阳, 等. 功能性纳米驱油剂研究进展[J]. 东北石油大学学报, 2020, 44(5): 70-75. |
WU Jingchun, SHI Fang, ZHAO Yang, et al. Research progress in functional nano-oil displacement agents[J]. Journal of Northeast Petroleum University, 2020, 44(5): 70-75. | |
[52] |
侯吉瑞, 闻宇晨, 屈鸣, 等. 纳米材料提高油气采收率的研究及应用[J]. 特种油气藏, 2020, 27(6): 47-53.
doi: 10.3969/j.issn.1006-6535.2020.06.006 |
HOU Jirui, WEN Yuchen, QU Ming, et al. Research and application of nano-materials to enhance oil and gas recovery technology[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 47-53.
doi: 10.3969/j.issn.1006-6535.2020.06.006 |
|
[53] | 刘江涛, 关小旭, 贺桃娥, 等. 纳米聚合物微球调剖剂的性能评价[J]. 石油与天然气化工, 2023, 52(4): 77-82. |
LIU Jiangtao, GUAN Xiaoxu, HE Tao'e, et al. Performance evaluation of nano-polymer microsphere profile control agen[J]. Chemical Engineering of Oil & Gas, 2023, 52(4): 77-82. | |
[54] |
张辰君, 金旭, 袁彬, 等. 纳米驱油材料提高采收率研究进展、挑战及前景[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 55-70.
doi: 10.11885/j.issn.1674-5086.2022.04.27.03 |
ZHANG Chenjun, JIN Xu, YUAN Bin, et al. Research progress, challenge and prospect of nanoscale oil-displacing materials for enhanced oil recovery[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(1): 55-70.
doi: 10.11885/j.issn.1674-5086.2022.04.27.03 |
[1] | 郑懿琼, 张涛, 刘海英, 阮聪慧, 邹帅. 近废型稠油油藏火驱效益开发新思路 [J]. 油气藏评价与开发, 2024, 14(3): 504-509. |
[2] | 石彦, 谢俊辉, 郭小婷, 吴通, 陈德全, 孙琳, 杜代军. 新疆油田中深层稠油CO2驱/吞吐实验研究 [J]. 油气藏评价与开发, 2024, 14(1): 76-82. |
[3] | 王俊衡,王健,周志伟,王丹翎,赵鹏,王桂庆,卢迎波. 稠油油藏CO2辅助蒸汽驱油机理实验研究 [J]. 油气藏评价与开发, 2021, 11(6): 852-857. |
[4] | 刘刚,王俊衡,王丹翎,颜永何,蒋雪峰,王倩. 耐高温栲胶堵剂的研制及油藏适应性评价 [J]. 油气藏评价与开发, 2021, 11(3): 452-458. |
[5] | 王彦祺,贺庆,龙志平. 渝东南地区页岩气钻完井技术主要进展及发展方向 [J]. 油气藏评价与开发, 2021, 11(3): 356-364. |
[6] | 高浩,蒲万芬,李一波,罗强,孙梓齐. 稠油油藏蒸汽驱后就地凝胶深部调驱实验研究 [J]. 油气藏评价与开发, 2020, 10(6): 58-64. |
[7] | 张楠,卢祥国,刘进祥,葛嵩,刘义刚,张云宝,李彦阅. 渤海LD5-2油藏复合调驱效果物理模拟实验研究 [J]. 油气藏评价与开发, 2020, 10(4): 119-124. |
[8] | 曹伟佳,卢祥国,张云宝,徐国瑞,李翔. 淀粉接枝共聚物凝胶堵水效果及作用机理研究 [J]. 油气藏评价与开发, 2019, 9(1): 44-50. |
|