[1] |
邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 2019, 46(3): 433-442.
|
|
ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration & Development, 2019, 46(3): 433-442.
|
[2] |
娄钰, 潘继平, 王陆新, 等. 中国天然气资源勘探开发现状、问题及对策建议[J]. 国际石油经济, 2018, 26(6): 21-27.
|
|
LOU Yu, PAN Jiping, WANG Luxin, et al. Problems and countermeasures in the exploration and development of natural gas resources in China[J]. International Petroleum Economics, 2018, 26(6): 21-27.
|
[3] |
赵贤正, 朱庆忠, 孙粉锦, 等. 沁水盆地高阶煤层气勘探开发实践与思考[J]. 煤炭学报, 2015, 40(9): 2131-2136.
|
|
ZHAO Xianzheng, ZHU Qingzhong, SUN Fenjin, et al. Practice of coalbed methane exploration and development in Qinshui Basin[J]. Journal of China Coal Society, 2015, 40(9): 2131-2136.
|
[4] |
张遂安, 曹立虎, 杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报, 2014, 39(9): 1927-1931.
|
|
ZHANG Suian, CAO Lihu, DU Caixia, et al. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society, 2014, 39(9): 1927-1931.
|
[5] |
刘斌, 杜海为, 崔金榜, 等. 煤层气井排采控制技术发展现状与展望[J]. 石油钻采工艺, 2019, 41(4): 489-493.
|
|
LIU Bin, DU Haiwei, CUI Jinbang, et al. Development status and prospect of CBM well production control technologies[J]. Oil Drilling & Production Technology, 2019, 41(4): 489-493.
|
[6] |
杜新锋, 郭盛强, 张群, 等. 多煤层煤层气井分层控压合层排采技术及装备[J]. 煤炭科学技术, 2018, 46(6): 114-118.
|
|
DU Xinfeng, GUO Shengqiang, ZHANG Qun, et al. Separate-layer pressure control and multi-layer drainage technology and device for coalbed methane wells with multiple seams[J]. Coal Science and Technology, 2018, 46(6): 114-118.
|
[7] |
刘新福, 綦耀光, 李延祥, 等. 单相流煤层气井井底流压预测方法研究[J]. 中国矿业大学学报, 2010, 39(6): 876-880.
|
|
LIU Xinfu, QI Yaoguang, LI Yanxiang, et al. Prediction of flowing bottomhole pressures for single-phase coalbed methane wells[J]. Journal of China University of Mining & Technology, 2010, 39(6): 876-880.
|
[8] |
孙仁远, 宣英龙, 任晓霞, 等. 煤层气井井底流压计算方法[J]. 石油钻采工艺, 2012, 34(4): 100-103.
|
|
SUN Renyuan, XUAN Yinglong, REN Xiaoxia, et al. Methods of bottom-hole flow pressure calculations for coalbed methane wells[J]. Oil Drilling & Production Technology, 2012, 34(4): 100-103.
|
[9] |
杨焦生, 王一兵, 王宪花. 煤层气井井底流压分析及计算[J]. 天然气工业, 2010, 30(2): 66-68.
|
|
YANG Jiaosheng, WANG Yibing, WANG Xianhua. Analysis and computation of flowing bottom hole pressure in coalbed methane wells[J]. Natural Gas Industry, 2010, 30(2): 66-68.
|
[10] |
张永平, 孟召平, 刘贺, 等. 煤层气井排采初期井底流压动态模型及应用分析[J]. 煤田地质与勘探, 2016, 44(2): 29-33.
|
|
ZHANG Yongping, MENG Zhaoping, LIU He, et al. Dynamic model for bottomhole flowing pressure in initial stage of CBM wells drainage and its application[J]. Coal Geology & Exploration, 2016, 44(2): 29-33.
|
[11] |
刘新福, 綦耀光, 刘春花, 等. 气水两相煤层气井井底流压预测方法[J]. 石油学报, 2010, 31(6): 998-1003.
|
|
LIU Xinfu, QI Yaoguang, LIU Chunhua, et al. Prediction of flowing bottomhole pressures for two-phase coalbed methane wells[J]. Acta Petrolei Sinica, 2010, 31(6): 998-1003.
|
[12] |
赵金, 张遂安. 煤层气井底流压生产动态研究[J]. 煤田地质与勘探, 2013, 41(2): 21-24.
|
|
ZHAO Jin, ZHANG Suian. Production dynamics of CBM bottom hole pressure[J]. Coal Geology & Exploration, 2013, 41(2): 21-24.
|
[13] |
毛慧, 韩国庆, 吴晓东, 等. 确定煤层气井合理生产压差的新思路[J]. 天然气工业, 2011, 31(3): 52-55.
|
|
MAO Hui, HAN Guoqing, WU Xiaodong, et al. A new discussion on the determination methods of reasonable drawdown pressure for a coalbed methane gas well[J]. Natural Gas Industry, 2011, 31(3): 52-55.
|
[14] |
董银涛, 鞠斌山, 张遂安. 煤层气直井井筒环空压力模型[J]. 煤炭学报, 2018, 43(9): 2534-2542.
|
|
DONG Yintao, JU Binshan, ZHANG Suian. Wellbore annulus pressure model of the vertical coalbed methane well[J]. Journal of China Coal Society, 2018, 43(9): 2534-2542.
|
[15] |
黄家宸, 张金川. 机器学习预测油气产量现状[J]. 油气藏评价与开发, 2021, 11(4): 613-620.
|
|
HUANG Jiachen, ZHANG Jinchuan. Overview of oil and gas production forecasting by machine learning[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 613-620.
|
[16] |
韩力群, 施彦. 人工神经网络理论、设计及应用[M]. 北京: 化学工业出版社, 2002.
|
|
HAN Liqun, SHI Yan. Artificial neural network theory, design and application[M]. Beijing: Chemical Industry Press, 2002.
|
[17] |
沙林秀, 胥陈卓. 基于主成分分析的NCPSO-BP机械钻速预测[J]. 石油钻采工艺, 2022, 44(4): 515-521.
|
|
SHA Linxiu, XU Chenzhuo. Prediction of NCPSO-BP ROP based on principal component ana[J]. Oil Drilling & Production Technology, 2022, 44(4): 515-521.
|
[18] |
王虹, 尤秀松, 李首滨, 等. 基于遗传算法与BP神经网络的支架跟机自动化研究[J]. 煤炭科学技术, 2021, 49(1): 272-277.
|
|
WANG Hong, YOU Xiusong, LI Shoubin, et al. Research on automation of support based on genetic algorithm and BP neural network[J]. Coal Science and Technology, 2021, 49(1): 272-277.
|
[19] |
张金梦, 刘慧君. 遗传算法优化BP神经网络的泊车位数量预测[J]. 重庆大学学报, 2018, 41(3): 80-85.
|
|
ZHANG Jinmeng, LIU Huijun. Prediction of spare parking spaces based on BP neural network optimized by genetic algorithm[J]. Journal of Chongqing University, 2018, 41(3): 80-85.
|
[20] |
臧子婧, 吴海波, 张平松, 等. 基于ABC-BP模型的煤层含气量预测[J]. 煤田地质与勘探, 2021, 49(2): 152-158.
|
|
ZANG Zijing, WU Haibo, ZHANG Pingsong, et al. Prediction of coal seam gas content based on ABC-BP model[J]. Coal Geology & Exploration, 2021, 49(2): 152-158.
|
[21] |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering An Open Access Journal, 2020, 8(1): 22-34.
|
[22] |
赵涛, 于师建. 基于GA-BP神经网络算法的高密度电法非线性反演[J]. 煤田地质与勘探, 2017, 45(2): 147-151.
|
|
ZHAO Tao, YU Shijian. GA-BP neural network algorithm-based nonlinear inversion for high density resistivity method[J]. Coal Geology & Exploration, 2017, 45(2): 147-151.
|
[23] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[24] |
罗发强, 刘景涛, 陈修平, 等. 基于BP和LSTM神经网络的顺北油田5号断裂带地层孔隙压力智能预测方法[J]. 石油钻采工艺, 2022, 44(4): 506-514.
|
|
LUO Faqiang, LIU Jingtao, CHEN Xiuping. Intelligent method for predicting formation pore pressure in No. 5 fault zone in Shunbei oilfield based on BP and LSTM neural network [J]. Oil Drilling & Production Technology, 2022, 44(4): 506-514.
|
[25] |
刘建军, 石定元, 武国宁. 基于Kent映射的混合混沌优化算法[J]. 计算机工程与设计, 2015, 36(6): 1498-1503.
|
|
LIU Jianjun, SHI Dingyuan, WU Guoning. Hybrid chaotic optimization algorithm based on Kent map[J]. Computer Engineering And Design, 2015, 36(6): 1498-1503.
|
[26] |
周刘喜, 张兴华, 李纬. 一种改进的多目标粒子群优化算法[J]. 计算机工程与应用, 2009, 45(33): 38-41.
|
|
ZHOU Liuxi, ZHANG Xinghua, LI Wei. Improved multi-objective particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2009, 45(33): 38-41.
|
[27] |
李永恒, 赵志刚. 基于越界重置和高斯变异的蝙蝠优化算法[J]. 计算机工程与科学, 2019, 41(1): 144-152.
|
|
LI Yongheng, ZHAO Zhigang. An improved bat algorithm based on cross-border relocation and Gaussian mutation[J]. Computer Engineering & Science, 2019, 41(1): 144-152.
|
[28] |
吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720.
|
|
LV Xin, MU Xiaodong, ZHANG Jun, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720.
|
[29] |
LUO Z, HASANIPANAH M, AMNIEH H B. GA-SVR: a novel hybrid data-driven model to simulate vertical load capacity of driven piles[J]. Engineering with Computers, 2021, 37(12): 823-831.
|
[30] |
孙雷, 罗强, 潘毅, 等. 基于GA-SVR的CO2驱原油最小混相压力预测模型[J]. 大庆石油地质与开发, 2017, 36(3): 123-129.
|
|
SUN Lei, LUO Qiang, PAN Yi, et al. Predicting model of the oil minimal miscible pressure for the CO2 flooding based on GA-SVR[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(3): 123-129.
|