油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (2): 257-265.doi: 10.13809/j.cnki.cn32-1825/te.2025.02.010
张文1(), 黄红星1,2(
), 刘莹1,2, 冯延青1,2, 孙伟1,2, 李子玲1, 王婧1, 赵增平1,2
收稿日期:
2024-01-10
发布日期:
2025-04-01
出版日期:
2025-04-26
通讯作者:
黄红星
E-mail:zw1229@petrochina.com.cn;huanghx3210@petrochina.com.cn
作者简介:
张文(1989—),男,本科,工程师,从事煤层气开发、煤层气藏动态分析、煤层气井动态监测研究。地址:山西省太原市小店区龙城大街龙城壹号A座,邮政编码:030000。E-mail:zw1229@petrochina.com.cn
基金资助:
ZHANG Wen1(), HUANG Hongxing1,2(
), LIU Ying1,2, FENG Yanqing1,2, SUN Wei1,2, LI Ziling1, WANG Jing1, ZHAO Zengping1,2
Received:
2024-01-10
Online:
2025-04-01
Published:
2025-04-26
Contact:
HUANG Hongxing
E-mail:zw1229@petrochina.com.cn;huanghx3210@petrochina.com.cn
摘要:
为明确鄂尔多斯盆地保德区块中低煤阶煤层气井及不同区域的产气特征,指导开发技术政策的制定,采用Arps递减分析法、产量累积法和流动物质平衡法,结合区块实际生产数据,建立了适用于不同开发阶段的煤层气可采储量计算方法。通过综合应用数据统计和生产动态分析等方法,系统研究了该区块3个开发单元(开发一单元至三单元)的可采储量与产气特征,并对比地质与开发参数,明确了地质条件差异对产气特征的影响。研究结果表明:保德区块由北向南(开发一单元至三单元),稳产期日产气量由3 314 m³降至864 m³,采气速度由3.82%降至0.99%,可采储量由1 391×104 m³降至399×104 m³,采收率由48.50%降至16.99%;同时,见气时间由99 d延长至228 d,稳产时间由981 d增加至1 553 d。相关性分析显示:稳产期日产气量与临储比、临界解吸压力及8+9号煤厚度显著相关,而可采储量则与8+9号煤厚度、4+5号煤含气量具有较高的相关性。地质参数对比表明,开发一单元的主力煤层厚度、含气量及临储比均优于开发二单元和三单元,且保存条件更为优越。研究认为,保德区块产气特征的南北差异主要受地质条件影响:北部开发一单元资源条件优越,煤层厚、含气量高、临储比大,因此,稳产气量高、采气速度高;南部开发三单元资源条件较差,稳产气量低,但稳产期较长。研究结果可为保德中低煤阶煤层气田的高效开发及不同单元排采制度的优化提供科学依据。
中图分类号:
ZHANG Wen,HUANG Hongxing,LIU Ying, et al. Research on recoverable reserves and gas production characteristics of coalbed methane wells in Baode block of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 257-265.
表1
鄂尔多斯盆地保德区块杨家湾井组可采储量与采收率计算结果"
井号 | 井型 | 生产层位 | 累积产气量/104 m3 | 地质储量/104 m3 | 可采储量/104 m3 | 采出程度/% | 采收率/% | 可采储量计算方法 |
---|---|---|---|---|---|---|---|---|
平均 | 1 843.26 | 3 954.06 | 2 683 | 46.62 | 67.87 | |||
B1 | 直井 | 4+5号/8+9号 | 3 024.99 | 4 674.33 | 3 813 | 64.71 | 81.57 | 产量累积法 |
B1X1 | 定向井 | 4+5号/8+9号 | 1 592.11 | 3 793.58 | 2 165 | 41.97 | 57.07 | 产量累积法 |
B1X2 | 定向井 | 4+5号/8+9号 | 2 141.03 | 4 459.19 | 2 879 | 48.01 | 64.56 | Arps递减分析法 |
B1X3 | 定向井 | 4+5号/8+9号 | 2 180.31 | 4 019.72 | 2 727 | 54.24 | 67.84 | Arps递减分析法 |
B1X4 | 定向井 | 4+5号/8+9号 | 2 868.19 | 4 419.27 | 3 936 | 64.90 | 89.06 | Arps递减分析法 |
B1-1X1 | 定向井 | 4+5号/8+9号 | 1 759.60 | 4 460.97 | 2 610 | 39.44 | 58.51 | 产量累积法 |
B1-1X2 | 定向井 | 4+5号/8+9号 | 1 242.62 | 4 138.23 | 1 991 | 30.03 | 48.11 | 产量累积法 |
B1-1X3 | 定向井 | 4+5号/8+9号 | 1 589.40 | 3 895.95 | 2 445 | 40.80 | 62.76 | Arps递减分析法 |
B1-1X4 | 定向井 | 4+5号/8+9号 | 1 691.83 | 3 943.04 | 2 718 | 42.91 | 68.93 | Arps递减分析法 |
B1-1X5 | 定向井 | 4+5号/8+9号 | 1 282.69 | 4 142.27 | 2 104 | 30.97 | 50.79 | Arps递减分析法 |
B1-2X1 | 定向井 | 4+5号/8+9号 | 1 438.37 | 3 231.38 | 2 488 | 44.51 | 76.99 | 流动物质平衡法 |
B1-2X2 | 定向井 | 4+5号/8+9号 | 1 434.26 | 3 205.76 | 2 290 | 44.74 | 71.43 | 产量累积法 |
B1-2X3 | 定向井 | 8+9号 | 715.74 | 1 948.96 | 1 195 | 36.72 | 61.31 | 流动物质平衡法 |
B1-2X4 | 定向井 | 4+5号/8+9号 | 1 323.60 | 3 558.29 | 2 331 | 37.20 | 65.51 | Arps递减分析法 |
B1-3 | 直井 | 4+5号/8+9号 | 1 352.27 | 4 125.96 | 2 370 | 32.77 | 57.44 | 产量累积法 |
B1-3X1 | 定向井 | 4+5号/8+9号 | 2 313.30 | 4 567.25 | 3 563 | 50.65 | 78.01 | 产量累积法 |
B1-3X2 | 定向井 | 4+5号/8+9号 | 3 486.90 | 4 778.46 | 4 126 | 72.97 | 86.35 | 产量累积法 |
B1-3X3 | 定向井 | 4+5号/8+9号 | 1 741.55 | 3 810.53 | 2 518 | 45.70 | 66.08 | Arps递减分析法 |
表2
不同开发单元开发参数表"
项目 | 开发 一单元 | 开发 二单元 | 开发 三单元 |
---|---|---|---|
生产井数/口 | 390 | 262 | 217 |
稳产期平均日产气量/m3 | 3 314 | 1 242 | 864 |
原始地层压力/MPa | 6.63 | 7.14 | 7.05 |
临界解吸压力/MPa | 5.57 | 4.57 | 3.38 |
地解压差/MPa | 1.06 | 2.57 | 3.67 |
临储比 | 0.84 | 0.64 | 0.48 |
见气时间/d | 99 | 196 | 228 |
达产时间/d | 1 000 | 755 | 872 |
稳产时间/d | 981 | 1 134 | 1 553 |
稳产期末累积产量/104 m3 | 607.7 | 255.6 | 175.6 |
稳产期末累积产量占比/% | 43.68 | 45.48 | 44.01 |
稳产期末采出程度/% | 21.2 | 10.8 | 7.4 |
采气速度/% | 3.82 | 1.79 | 0.99 |
自然递减率/% | 8.58 | 7.15 | 6.06 |
递减期累积产量/104 m3 | 783.3 | 306.4 | 223.4 |
递减期产量占比/% | 56.32 | 54.52 | 55.99 |
可采储量/104 m3 | 1 391 | 562 | 399 |
采收率/% | 48.50 | 23.86 | 16.99 |
表3
不同开发单元地质参数表"
主要因素 | 地质条件 | 开发一单元 | 开发二单元 | 开发三单元 | |
---|---|---|---|---|---|
构造条件 | 构造形态 | 南西倾斜的单斜构造 | 向西倾斜的单斜构造 | 南西倾斜的单斜构造 | |
断层 | 无断层 | 无断层 | 少量断层发育 | ||
储层条件 | 埋深/m | 400~1 100(666) | 600~1 100(884) | 650~1 150(925) | |
煤层厚度/m | 4+5号煤 | 6.0~9.0(6.7) | 5.0~8.0(6.1) | 4.0~8.0(5.3) | |
8+9号煤 | 12.0~18.0(13.1) | 8.0~12.0(10.5) | 6.0~10.0(9.1) | ||
含气量/(m³/t) | 4+5号煤 | 4.0~9.0(7.3) | 5.0~10.0(7.6) | 7.0~10.0(7.8) | |
8+9号煤 | 4.0~10.0(8.6) | 4.0~9.0(7.5) | 4.0~8.0(6.5) | ||
孔隙度/% | 4+5号煤 | 4.0~5.5(4.5) | 3.0~5.5(3.2) | 2.0~5.0(3.2) | |
8+9号煤 | 2.0~4.0(3.2) | 2.0~4.0(3.2) | 2.0~5.0(3.4) | ||
渗透率/10-3 μm2 | 4+5号煤 | 4.0~9.0(5.4) | 3.0~7.0(4.3) | 2.0~5.0(3.2) | |
8+9号煤 | 4.5~5.5(4.9) | 4.5~5.5(5.0) | 4.5~5.5(4.7) | ||
煤体结构 | 原生结构煤 | 原生结构煤 | 原生结构煤 | ||
保存条件 | 顶板岩性 | 4+5号煤 | 泥岩、泥质砂岩 | 泥岩、泥质砂岩 | 泥岩、砂岩 |
8+9号煤 | 泥岩、炭质泥岩 | 泥岩、砂质泥岩 | 泥岩、炭质泥岩 | ||
顶板厚度/m | 4+5号煤 | 3.0~10.0(4.0) | 2.0~6.0(2.7) | 1.0~5.0(2.2) | |
8+9号煤 | 2.0~8.0(3.7) | 2.0~12.0(3.2) | 2.0~12.0(4.3) | ||
矿化度/(mg/L) | 2 000~4 500(3 656) | 1 700~3 000(2 406) | 1 000~2 400(1 842) | ||
水文地质 | 弱径流区—滞留区 | 径流区—弱径流区 | 径流区—弱径流区 |
表4
鄂尔多斯盆地保德区块地质与生产参数相关性分析表"
4+5号煤埋深 | 8+9号煤埋深 | 4+5号煤厚度 | 8+9号煤厚度 | 4+5号煤含气量 | 8+9号煤含气量 | 4+5号煤孔隙度 | 8+9号煤孔隙度 | 地层 压力 | 临界解吸压力 | 临储比 | 见气 时间 | 稳定日产气量 | 可采 储量 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4+5号煤 埋深 | 1 | 0.999 | -0.307 | -0.099 | 0.309 | -0.302 | 0.155 | -0.163 | 0.864 | -0.154 | -0.798 | 0.730 | -0.502 | 0.135 |
8+9号煤 埋深 | 0.999 | 1 | -0.318 | -0.074 | 0.327 | -0.290 | 0.146 | -0.169 | 0.865 | -0.130 | -0.784 | 0.716 | -0.479 | 0.160 |
4+5号煤 厚度 | -0.307 | -0.318 | 1 | 0.200 | -0.209 | 0.053 | -0.203 | -0.446 | -0.163 | -0.090 | 0.003 | 0.104 | 0.141 | 0.141 |
8+9号煤 厚度 | -0.099 | -0.074 | 0.200 | 1 | 0.286 | 0.237 | -0.323 | -0.285 | -0.074 | 0.526 | 0.329 | -0.300 | 0.613 | 0.826 |
4+5号煤 含气量 | 0.309 | 0.327 | -0.209 | 0.286 | 1 | 0.426 | 0.046 | -0.120 | 0.328 | 0.431 | -0.061 | 0.191 | 0.129 | 0.602 |
8+9号煤 含气量 | -0.302 | -0.290 | 0.053 | 0.237 | 0.426 | 1 | 0.030 | 0.235 | -0.238 | 0.594 | 0.538 | -0.427 | 0.538 | 0.224 |
4+5号煤 孔隙度 | 0.155 | 0.146 | -0.203 | -0.323 | 0.046 | 0.030 | 1 | 0.277 | 0.172 | -0.064 | -0.211 | 0.305 | -0.220 | -0.180 |
8+9号煤 孔隙度 | -0.163 | -0.169 | -0.446 | -0.285 | -0.120 | 0.235 | 0.277 | 1 | -0.112 | 0.131 | 0.200 | -0.301 | -0.106 | -0.403 |
地层压力 | 0.864 | 0.865 | -0.163 | -0.074 | 0.328 | -0.238 | 0.172 | -0.112 | 1 | 0.059 | -0.817 | 0.762 | -0.415 | 0.160 |
临界解 吸压力 | -0.154 | -0.130 | -0.090 | 0.526 | 0.431 | 0.594 | -0.064 | 0.131 | 0.059 | 1 | 0.500 | -0.430 | 0.693 | 0.526 |
临储比 | -0.798 | -0.784 | 0.003 | 0.329 | -0.061 | 0.538 | -0.211 | 0.200 | -0.817 | 0.500 | 1 | -0.912 | 0.735 | 0.121 |
见气时间 | 0.730 | 0.716 | 0.104 | -0.300 | 0.191 | -0.427 | 0.305 | -0.301 | 0.762 | -0.430 | -0.912 | 1 | -0.695 | -0.041 |
稳定日 产气量 | -0.502 | -0.479 | 0.141 | 0.613 | 0.129 | 0.538 | -0.220 | -0.106 | -0.415 | 0.693 | 0.735 | -0.695 | 1 | 0.466 |
可采储量 | 0.135 | 0.160 | 0.141 | 0.826 | 0.602 | 0.224 | -0.180 | -0.403 | 0.160 | 0.526 | 0.121 | -0.041 | 0.466 | 1 |
[1] | 田炜, 王会涛. 沁水盆地高阶煤煤层气开发再认识[J]. 天然气工业, 2015, 35(6): 117-123. |
TIAN Wei, WANG Huitao. Latest understandings of the CBM development from high-rank coals in the Qinshui Basin[J]. Natural Gas Industry, 2015, 35(6): 117-123. | |
[2] | 郑永旺, 崔轶男, 李鑫, 等. 深层高阶煤层CO2-ECBM技术研究与应用启示: 以沁水盆地晋中地区为例[J]. 石油实验地质, 2025, 47(1): 143-152. |
ZHENG Yongwang, CUI Yinan, LI Xin, XIAO Cui, et al. Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin[J]. Petroleum Geology & Experiment, 2025, 47(1): 143-152. | |
[3] | 张嘉琪, 刘曾勤, 申宝剑, 等. 国内外深层煤层气勘探开发进展与启示[J]. 石油实验地质, 2025, 47(1): 1-8. |
ZHANG Jiaqi, LIU Zengqin, SHEN Baojian, et al. Progress and insights from worldwide deep coalbed methane exploration and development[J]. Petroleum Geology & Experiment, 2025, 47(1): 1-8. | |
[4] | 温声明, 文桂华, 李星涛, 等. 地质工程一体化在保德煤层气田勘探开发中的实践与成效[J]. 中国石油勘探, 2018, 23(2): 69-75. |
WEN Shengming, WEN Guihua, LI Xingtao, et al. Application and effect of geology-engineering integration in the exploration and development of Baode CBM field[J]. China Petroleum Exploration, 2018, 23(2): 69-75. | |
[5] | 陈博, 汤达祯, 林文姬, 等. 基于地质建模的保德Ⅰ单元煤层气井产能响应特征[J]. 煤田地质与勘探, 2020, 48(5): 53-63. |
CHEN Bo, TANG Dazhen, LIN Wenji, et al. Geological modeling-based productivity response characteristics of the CBM well in Baode unit Ⅰ[J]. Coal Geology & Exploration, 2020, 48(5): 53-63. | |
[6] | 胡秋嘉, 李梦溪, 王立龙, 等. 樊庄区块煤层气直井产气曲线特征分析[J]. 中国煤层气, 2012, 9(6): 3-7. |
HU Qiujia, LI Mengxi, WANG Lilong, et al. Analysis on coalbed methane straight well gas yield curve characteristic of Fanzhuang Block[J]. China Coalbed Methane, 2012, 9(6): 3-7. | |
[7] | 贾慧敏, 胡秋嘉, 樊彬, 等. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术[J]. 煤田地质与勘探, 2021, 49(2): 34-42. |
JIA Huimin, HU Qiujia, FAN Bin, et al. Causes for low CBM production of vertical wells and efficient development technology in northern Zhengzhuang Block in Qinshui Basin[J]. Coal Geology & Exploration, 2021, 49(2): 34-42. | |
[8] | 刘世奇, 方辉煌, 桑树勋, 等. 沁水盆地南部煤层气直井合层排采产气效果数值模拟[J]. 煤田地质与勘探, 2022, 50(6): 20-31. |
LIU Shiqi, FANG Huihuang, SANG Shuxun, et al. Numerical simulation of gas production for multilayer drainage coalbed methane vertical wells in southern Qinshui Basin[J]. Coal Geology & Exploration, 2022, 50(6): 20-31. | |
[9] | 刘升贵, 袁文峰, 张新亮, 等. 潘庄区块煤层气井产气曲线特征及采收率的研究[J]. 煤炭学报, 2013, 38(增刊1): 164-167. |
LIU Shenggui, YUAN Wenfeng, ZHANG Xinliang, et al. The production curve and recovery rate of coalbed methane well in Panzhuang block[J]. Journal of China Coal Society, 2013, 38(Suppl. 1): 164-167. | |
[10] | 周叡, 鲁秀芹, 张俊杰, 等. 沁水盆地樊庄区块煤层气开发生产规律分析[J]. 煤炭科学技术, 2018, 46(6): 69-73. |
ZHOU Rui, LU Xiuqin, ZHANG Junjie, et al. Analysis on development and production law of CBM in Fanzhuang Block of Qinshui Basin[J]. Coal Science and Technology, 2018, 46(6): 69-73. | |
[11] | 苗耀, 牛绪海, 左银卿. 沁水盆地樊庄区块煤层气高产井递减特征及采收率预测[J]. 煤炭技术, 2014, 33(9): 318-320. |
MIAO Yao, NIU Xuhai, ZUO Yinqing. Production decline characteristics and recovery rate forcasting for coalbed methane well of high production in Fanzhuang Block Qinshui Basin[J]. Coal Technology, 2014, 33(9): 318-320. | |
[12] | 苗耀, 左银卿, 周叡, 等. 沁水煤层气田开发直井全生命周期产量预测方法[J]. 中国煤层气, 2015, 12(6): 19-22. |
MIAO Yao, ZUO Yinqing, ZHOU Rui, et al. A prediction method on CBM production of vertical wells of whole cycle in Qinshui CBM Field[J]. China Coalbed Methane, 2015, 12(6): 19-22. | |
[13] | 郭晓娇, 王雷, 姚仙洲, 等. 深部煤岩地质特征及煤层气富集主控地质因素: 以鄂尔多斯盆地东部M区为例[J]. 石油实验地质, 2025, 47(1): 17-26. |
GUO Xiaojiao, WANG Lei, YAO Xianzhou, et al. Geological characteristics of deep coal rock and main geological factors controlling coalbed methane enrichment: a case study of the M area in the eastern Ordos Basin[J]. Petroleum Geology & Experiment, 2025, 47(1): 17-26. | |
[14] | 闫霞, 温声明, 聂志宏, 等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田, 2020, 27(3): 375-380. |
YAN Xia, WEN Shengming, NIE Zhihong, et al. Re-recognition of geological factors affecting coalbed methane development effect[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 375-380. | |
[15] | 孙立春, 刘佳, 李娜, 等. 鄂尔多斯盆地神府区块深部煤层气井产量主控因素及合理压裂规模优化[J]. 石油实验地质, 2025, 47(1): 43-53. |
SUN Lichun, LIU Jia, LI Na, et al. Main controlling factors of production and reasonable fracturing scale optimization of deep coalbed methane wells in Shenfu block, Ordos Basin[J]. Petroleum Geology & Experiment, 2025, 47(1): 43-53. | |
[16] | 王渊, 王辰龙, 王凤清. 煤层气井压降规律与排采参数关系分析: 以保德区块为例[J]. 石油钻采工艺, 2019, 41(4): 502-508. |
WANG Yuan, WANG Chenlong, WANG Fengqing. Analysis on the relationship between pressure drop laws and production parameters of CBM well: A case study on the Baode Block[J]. Oil Drilling & Production Technology, 2019, 41(4): 502-508. | |
[17] | 张雷, 郝帅, 张伟, 等. 中低煤阶煤层气储量复算及认识: 以鄂尔多斯盆地东缘保德煤层气田为例[J]. 石油实验地质, 2020, 42(1): 147-155. |
ZHANG Lei, HAO Shuai, ZHANG Wei, et al. Recalculation and understanding of middle and low rank coalbed methane reserves: A case study of Baode Coalbed Methane Field on the eastern edge of Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 147-155. | |
[18] | 杨秀春, 毛建设, 林文姬, 等. 保德区块煤层气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 381-388. |
YANG Xiuchun, MAO Jianshe, LIN Wenji, et al. Exploration history and enlightenment of coalbed methane in Baode Block[J]. Xinjiang Petroleum Geology, 2021, 42(3): 381-388. | |
[19] | 张庆丰, 李子玲, 张继坤, 等. 鄂尔多斯盆地保德区块二叠系太原组—山西组主采煤层脆性评价: 基于卷积神经网络方法[J]. 石油实验地质, 2025, 47(1): 204-212. |
ZHANG Qingfeng, LI Ziling, ZHANG Jikun, et al. Brittleness evaluation of main coal seams in Permian Taiyuan-Shanxi formations, Baode block, Ordos Basin: Based on a convolutional neural network method[J]. Petroleum Geology & Experiment, 2025, 47(1): 204-212. | |
[20] | 周亚彤. 延川南煤层气田动态特征和SEC动态储量评估方法研究[J]. 油气藏评价与开发, 2020, 10(4): 53-58. |
ZHOU Yatong. Dynamic characteristics and SEC dynamic reserve assessment of CBM gas field in South Yanchuan[J]. Reservoir Evaluation and Development, 2020, 10(4): 53-58. | |
[21] | 陈浩, 李建明, 孙斌. 煤岩等温吸附曲线特征在煤层气研究中的应用[J]. 重庆科技学院学报(自然科学版), 2011, 13(2): 24-26. |
CHEN Hao, LI Jianming, SUN Bin. Application of characteristics of the coal isothermal adsorption curve in coalbed methane research[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2011, 13(2): 24-26. | |
[22] | 曹毅民, 丁蓉, 赵启阳, 等. 煤层气可采储量计算方法的评价与应用[J]. 天然气工业, 2018, 38(增刊1): 50-56. |
CAO Yimin, DING Rong, ZHAO Qiyang, et al. Evaluation and application for calculation method of recoverable reserves of coalbed methane[J]. Natural Gas Industry, 2018, 38(Suppl. 1): 50-56. | |
[23] | 胡秋嘉, 贾慧敏, 张聪, 等. 高阶煤煤层气井稳产时间预测方法及应用: 以沁水盆地南部樊庄-郑庄为例[J]. 煤田地质与勘探, 2022, 50(9): 137-144. |
HU Qiujia, JIA Huimin, ZHANG Cong, et al. Stable-production period prediction method and application in high-rank coalbed methane wells: A case study of Fanzhuang-Zhengzhuang Block in southern Qinshui Basin[J]. Coal Geology & Exploration, 2022, 50(9): 137-144. | |
[24] | 张万茂. 苏东区块地层压力与动储量评价[D]. 成都: 成都理工大学, 2018. |
ZHANG Wanmao. Evaluation of formation pressure and dynamic reserves in Eastern-Sulige gas field[D]. Chengdu: Chengdu University of Technology, 2018. | |
[25] | SHI J T, CHANG Y C, WU S G, et al. Development of material balance equations for coalbed methane reservoirs considering dewatering process, gas solubility, pore compressibility and matrix shrinkage[J]. International Journal of Coal Geology, 2018, 195: 200-216. |
[26] | 周尚忠, 张文忠. 当前我国煤层气采收率估算方法及存在问题[J]. 中国煤层气, 2011, 8(4): 9-12. |
ZHOU Shangzhong, ZHANG Wenzhong. The current methods for estimating recovery rate of CBM and the existing problems in China[J]. China Coalbed Methane, 2011, 8(4): 9-12. | |
[27] | 接敬涛, 邵先杰, 乔雨朋, 等. 煤层气采收率预测方法研究及应用: 以韩城矿区为例[J]. 重庆科技学院学报(自然科学版), 2015, 17(5): 59-63. |
Jingtao JIE, SHAO Xianjie, QIAO Yupeng, et al. Research on the predictive method of CBM recovery efficiency: A case study of Hancheng Mining Area[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2015, 17(5): 59-63. |
[1] | 武玺. 沁水盆地高阶煤煤层气水平井高效开发技术及实践 [J]. 油气藏评价与开发, 2025, 15(2): 167-174. |
[2] | 王良军, 王勇, 章新文, 金芸芸, 朱颜, 张高源, 李晖, 李旺举. 鄂尔多斯盆地南部聚煤作用控气和煤层气勘探潜力——以旬宜探区石炭系太原组为例 [J]. 油气藏评价与开发, 2025, 15(2): 175-184. |
[3] | 朱苏阳, 刘伟, 王运峰, 贾春生, 陈朝刚, 彭小龙. 四川盆地煤层气勘探开发现状与前景 [J]. 油气藏评价与开发, 2025, 15(2): 185-193. |
[4] | 杨雪, 田冲, 杨雨然, 张景缘, 王青, 吴伟, 罗超. 四川盆地长宁地区深层煤层气成藏特征与勘探潜力 [J]. 油气藏评价与开发, 2025, 15(2): 194-204. |
[5] | 王鹏翔, 张洲, 余婉莹, 邹强, 杨正滔. 深/浅部煤储层孔裂隙结构及三维空间分布差异特征 [J]. 油气藏评价与开发, 2025, 15(2): 227-236. |
[6] | 余洋, 董银涛, 李云波, 包宇, 张立侠, 孙浩. 基于改进SSA-BPNN的煤层气直井井底流压预测研究 [J]. 油气藏评价与开发, 2025, 15(2): 250-256. |
[7] | 胡秋嘉, 刘春春, 张建国, 崔新瑞, 王千, 王琪, 李俊, 何珊. 基于机器学习的煤层气井产能预测与压裂参数优化 [J]. 油气藏评价与开发, 2025, 15(2): 266-273. |
[8] | 赵崇胜, 王波, 苟波, 罗鹏飞, 陈国军, 巫国全. 深部煤层气油电混驱压裂设备配置与工艺技术 [J]. 油气藏评价与开发, 2025, 15(2): 292-299. |
[9] | 林伟强, 丛彭, 王红, 魏子琛, 杨云天, 么志强, 曲丽丽, 马立民, 王方鲁. 深层煤层气水平井地质导向技术应用与探讨——以鄂尔多斯盆地神木气田X区块为例 [J]. 油气藏评价与开发, 2025, 15(2): 300-309. |
[10] | 赵海峰, 王成旺, 席悦, 王超伟. 深层煤层水平井压裂动态应力场研究——以鄂尔多斯盆地大宁—吉县区块为例 [J]. 油气藏评价与开发, 2025, 15(2): 310-323. |
[11] | 孔祥伟, 谢昕, 王存武. 基于综合可压指数的煤层气水平井压裂分段参数优化 [J]. 油气藏评价与开发, 2024, 14(6): 925-932. |
[12] | 张兵, 杜丰丰, 张海锋, 魏超. 基于经济效益评价的煤层气开发有利区优选——以鄂尔多斯盆地东缘杨家坡区块为例 [J]. 油气藏评价与开发, 2024, 14(6): 933-941. |
[13] | 邱文慈, 桑树勋, 郭志军, 韩思杰, 周效志, 周培明, 吴章利, 桑国蕴, 张斌斌, 高为. 贵州六盘水煤田构造煤储层特征与煤层气勘探开发方向 [J]. 油气藏评价与开发, 2024, 14(6): 959-966. |
[14] | 黄力, 熊先钺, 王峰, 孙雄伟, 张艺馨, 赵龙梅, 石石, 张稳, 赵浩阳, 季亮, 邓琳. 深层煤层气直丛井产能影响因素确定新方法 [J]. 油气藏评价与开发, 2024, 14(6): 990-996. |
[15] | 薛冈,郭涛,张烨,徐向阳,汪威,韩克宁,郭东鑫,金晓波. 渝南地区二叠系龙潭组C25煤层煤层气基础地质条件分析 [J]. 油气藏评价与开发, 2024, 14(3): 492-503. |
|