油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (2): 310-323.doi: 10.13809/j.cnki.cn32-1825/te.2025.02.016

• 工程工艺 • 上一篇    下一篇

深层煤层水平井压裂动态应力场研究——以鄂尔多斯盆地大宁—吉县区块为例

赵海峰1(), 王成旺2,3, 席悦1, 王超伟1   

  1. 1.中国石油大学(北京)石油工程学院,北京 102249
    2.中石油煤层气有限责任公司,北京 100028
    3.中石油煤层气有限责任公司工程技术研究院,陕西 西安 710082
  • 收稿日期:2024-08-15 发布日期:2025-04-01 出版日期:2025-04-26
  • 作者简介:赵海峰(1980—),男,博士,教授,从事岩石力学、水力压裂及酸化的研究。地址:北京市昌平区城北街道府学路18号,邮政编码:102249。E-mail:zhaohf@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目“一种复杂缝网的能量断裂准则及其在致密砂岩压裂模拟中的应用”(11672333)

Study on dynamic stress field of fracturing in horizontal wells of deep coal seams: A case study of Daning-Jixian block in Ordos Basin

ZHAO Haifeng1(), WANG Chengwang2,3, XI Yue1, WANG Chaowei1   

  1. 1. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249 China
    2. Petrochina Coalbed Methane Company Limited, Beijing 100028, China
    3. Engineering Technology Research Institute, Petrochina Coalbed Methane Company Limited, Xi’an, Shaanxi 710082, China
  • Received:2024-08-15 Online:2025-04-01 Published:2025-04-26

摘要:

中国深层煤层气示范基地已初步建成,并逐步迈入规模性勘探开发的重要阶段。这一突破为能源领域带来了新的希望与挑战。随着开发的深入,传统三维静态模型在预测强非均质性储层在水平井大规模压裂工况下的渗流-应力耦合动态地应力演化方面显示出局限性。对此,该研究以大宁—吉县区块的深部煤为例,围绕储层压裂动态应力场展开深入探究。研究采用地质工程一体化的煤层气储层压裂缝网模型,对水平井平台压裂过程进行模拟,综合考虑了地质条件和工程因素,能够更真实地反映实际情况。以时间为尺度,针对水平井台S开展大规模压裂动态应力场模拟研究。结果表明:经过多轮压裂诱导应力的叠加作用,现今地应力分布发生了显著变化。为了准确量化这种影响,引入了水平主应力差异系数这一关键指标,即两向水平应力的比值。当该参数接近1时,表明压裂改造效果最佳。模拟结果显示:压后区域内的水平主应力差异系数的范围由1.15~1.25逐渐减小至1.05~1.15,井周大部分区域的水平主应力差异系数小于1.10,这表明水平井大规模压裂改造效果良好。这一研究成果不仅为深层煤层大规模压裂开发提供了更合理的模拟方法,还为优化压裂设计、提高煤层气采收率提供了科学依据。通过地质工程一体化的方法,能够更准确地预测和评估压裂过程中的动态应力场变化,从而指导实际生产中的压裂作业。

关键词: 深层煤层气, 大规模压裂, 动态地应力, 水平井, 应力场研究

Abstract:

China’s deep coalbed methane demonstration base has been preliminarily established and is gradually entering an important stage of large-scale exploration and development. This breakthrough has brought new opportunities and challenges to the energy sector. With ongoing development, traditional 3D static models have proven inadequate for predicting the dynamic in-situ stress evolution of coupled seepage-stress interaction in strongly heterogeneous reservoirs under large-scale horizontal well fracturing conditions. In response, this study takes the deep coalbed methane reservoir in the Daning-Jixian block as an example to conduct in-depth investigation of the dynamic stress field during reservoir fracturing. This study adopts an integrated geological engineering fracture network model for coalbed methane reservoirs to simulate the horizontal well platform fracturing process, comprehensively considering both geological conditions and engineering factors, thereby more accurately reflecting the actual situation. A time-dependent simulation study of the dynamic stress field during large-scale fracturing for horizontal well platform S was carried out. The results indicate that after multiple rounds of fracturing-induced stress superposition, the present in-situ stress distribution has undergone significant alterations. In order to quantify this impact, a key indicator—the horizontal principal stress difference coefficient, defined as the ratio of the two horizontal principal stresses—was introduced. When this coefficient approaches 1, it indicates an optimal fracturing effect. The simulation results show that the range of the horizontal principal stress difference coefficient in the post-fracturing area gradually decreases from 1.15-1.25 to 1.05-1.15, with most areas around the well exhibiting a value of less than 1.10, demonstrating that the large-scale fracturing in horizontal wells is effective. This research achievement not only provides a more reasonable simulation method for the large-scale fracturing development of deep coalbed methane, but also offers a scientific basis for optimizing fracturing design and improving coalbed methane recovery. Through an integrated geological engineering method, it is possible to more accurately predict and assess the dynamic stress field changes during the fracturing process, thereby guiding the fracturing operations in actual production.

Key words: deep coalbed methane, large-scale fracturing, dynamic in-situ stress, horizontal well, stress field study

中图分类号: 

  • TE348