[1] 张荣军. 特低渗透油藏注氮气提高采收率技术: 以志丹油田旦八区为例[M]. 北京: 石油工业出版社, 2017. ZHANG Rongjun.Enhanced oil recovery technology by injecting nitrogen into ultra-low permeability reservoir: Taking Dan 8 area of Zhidan Oilfield as an example[M]. Beijing: Petroleum Industry Press, 2017. [2] 高树生, 叶礼友, 刘华勋, 等. 柴达木盆地涩北气田水淹后注CO2驱提高采收率实验分析[J]. 天然气工业, 2023, 43(12): 55-62. GAO Shusheng, YE Liyou, LIU Huaxun, et al.An experimental study on recovery factor of watered gas reservoirs by CO2 EOR in the Sebei Gas Field of the Qaidam Basin[J]. Natural Gas Industry, 2023, 43(12): 55-62. [3] 姚红生, 高玉巧, 郑永旺, 等. CO2快速吞吐提高页岩油采收率现场试验[J]. 天然气工业, 2024, 44(3): 10-19. YAO Hongsheng, GAO Yuqiao, ZHENG Yongwang, et al.Field tests and effect of CO2 rapid huff-n-puff to enhance shale oil recovery[J]. Natural Gas Industry, 2024, 44(3): 10-19. [4] 舒晓辉. 界面张力对低渗油藏CO2驱油气相对渗透率曲线的影响[J]. 石油天然气学报, 2013, 35(3): 122-123, 137, 167-168. SHU Xiaohui. Effect of interfacial tension on oil-gas relative permeability curve in CO2 flooding for low permeability reservoirs[J]. Journal of Oil and Gas Technology, 2013, 35(3): 122-123, 137, 167-168. [5] 孙长宇, 王文强, 陈光进, 等. 注CO2油气藏流体体系油/水和油/气界面张力实验研究[J]. 中国石油大学学报(自然科学版), 2006, 30(5): 109-112. SUN Changyu, WANG Wenqiang, CHEN Guangjin, et al.Interfacial tension experiment of oil and water, oil and gas for CO2 injected reservoir fluid system[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(5): 109-112. [6] 王海涛, 王锐, 伦增珉, 等. 高温高压CO2/原油界面张力及对驱油效率影响[J]. 科学技术与工程, 2017, 17(34): 38-42. WANG Haitao, WANG Rui, LUN Zengmin, et al.Interfacial tension and oil displacement efficiency between CO2 and crude oil under high temperature and high pressure[J]. Science Technology and Engineering, 2017, 17(34): 38-42. [7] 宋新民, 王峰, 马德胜, 等. 中国石油二氧化碳捕集、驱油与埋存技术进展及展望[J]. 石油勘探与开发, 2023, 50(1): 206-218. SONG Xinmin, WANG Feng, MA Desheng, et al.Progress and prospect of carbon dioxide capture, utilization and storage in CNPC oilfields[J]. Petroleum Exploration and Development, 2023, 50(1): 206-218. [8] 夏惠芬, 徐勇. 低渗透油藏CO2驱油机理及应用现状研究[J]. 当代化工, 2017, 46(3): 471-474. XIA Huifen, XU Yong.Study on the mechanism and application of CO2 flooding in low permeability reservoirs[J]. Contemporary Chemical Industry, 2017, 46(3): 471-474. [9] LI H, LAU H C, WEI X, et al.CO2 storage potential in major oil and gas reservoirs in the northern South China Sea[J]. International Journal of Greenhouse Gas Control, 2021, 108: 103328. [10] LIU Y, WANG P, YANG M, et al.CO2 sequestration in depleted methane hydrate sandy reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 428-434. [11] 刘佳, 孟凡坤, 徐云峰, 等. 高含水油藏CO2驱油与封存联合优化研究[J]. 油气地质与采收率, 2024, 31(3): 186-194. LIU Jia, MENG Fankun, XU Yunfeng, et al.Study on joint optimization of CO2 flooding and sealing in high water-cut reservoir[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3): 186-194. [12] 陈欢庆. CO2驱油与埋存技术新进展[J]. 油气地质与采收率, 2023, 30(2): 18-26. CHEN Huanqing.New progress of CO2 flooding and storage technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 18-26. [13] 杨胜来, 杭达震, 孙蓉, 等. CO2对原油的抽提及其对原油黏度的影响[J]. 中国石油大学学报(自然科学版), 2009, 33(4): 85-88. YANG Shenglai, HANG Dazhen, SUN Rong, et al.CO2 extraction for crude oil and its effect on crude oil viscosity[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(4): 85-88. [14] 鞠斌山, 杨怡, 杨勇, 等. 高含水油藏CO2驱油与地质封存机理研究现状及待解决的关键问题[J]. 油气地质与采收率, 2023, 30(2): 53-67. JU Binshan, YANG Yi, YANG Yong, et al.Present research situation and key pending issues of CO2 flooding and geological storage mechanism in high water-cut reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 53-67. [15] 张烈辉, 杨军, 熊钰, 等. 不同注采方式下CO2埋存与驱油效果优化评价[J]. 天然气工业, 2008, 28(8): 102-104. ZHANG Liehui, YANG Jun, XIONG Yu, et al.Optimizing evaluation of CO2 storage and flooding effect under different injection-production modes[J]. Natural Gas Industry, 2008, 28(8): 102-104. [16] 胡伟, 吕成远, 王锐, 等. 水驱转CO2混相驱渗流机理及传质特征[J]. 石油学报, 2018, 39(2): 201-207. HU Wei, LYU Chengyuan, WANG Rui, et al.Porous flow mechanisms and mass transfer characteristics of CO2 miscible flooding after water flooding[J]. Acta Petrolei Sinica, 2018, 39(2): 201-207. [17] 蒲万芬, 王崇阳, 李一波, 等. 致密油储层CO2驱核磁共振实验研究[J]. 科学技术与工程, 2017, 17(7): 30-34. PU Wanfen, WANG Chongyang, LI Yibo, et al.Nuclear magnetic resonance(NMR) experimental study of CO2 flooding in tight reservoir[J]. Science Technology and Engineering, 2017, 17(7): 30-34. [18] 赵越超, 宋永臣, 郝敏, 等. 磁共振成像在CO2驱油实验中应用[J]. 大连理工大学学报, 2012, 52(1): 23-28. ZHAO Yuechao, SONG Yongchen, HAO Min, et al.Application of MRI to CO2 displacement oil experiments[J]. Journal of Dalian University of Technology, 2012, 52(1): 23-28. [19] 邓宝康, 李军建, 高银山, 等. 鄂尔多斯盆地致密油藏注CO2吞吐微观剩余油分布特征[J]. 大庆石油地质与开发, 2020, 39(6): 119-125. DENG Baokang, LI Junjian, GAO Yinshan, et al.Microscopic remained oil distribution characteristics of CO2 huff and puff in the tight oil reservoir in Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(6): 119-125. [20] 李二党, 韩作为, 高祥瑞, 等. 不同注气介质驱替致密油藏微观孔隙动用特征研究[J]. 石油钻探技术, 2020, 48(5): 85-91. LI Erdang, HAN Zuowei, GAO Xiangrui, et al.Research on the microscopic pore producing characteristics of tight reservoirs displaced by different gas injection media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. [21] 王亚, 葛丽珍, 路研, 等. 基于核磁共振驱替实验的低渗透砂岩流体可动性及剩余油赋存特征研究[J]. 油气地质与采收率, 2023, 30(6): 22-31. WANG Ya, GE Lizhen, LU Yan, et al.Study on fluid mobility and occurrence characteristics of remaining oil in low-permeability sandstone reservoirs based on nuclear magnetic resonance displacement experiments[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 22-31. [22] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 岩心分析方法: GB/T 29172—2012[S]. 北京: 中国标准出版社, 2013. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Practices for core analysis: GB/T 29172—2012[S]. Beijing: Standards Press of China, 2013. [23] 全国石油天然气标准化技术委员会. 油气藏流体物性分析方法: GB/T 26981—2020[S]. 北京: 中国标准出版社, 2020. National Technical Committee for Petroleum and Natural Gas Standardization. Methods for physical property analysis of reservoir fluids: GB/T 26981—2020[S]. Beijing: Standards Press of China, 2020. |