油气藏评价与开发

• •    下一篇

页岩气产能评价研究进展:内涵、方法和方向

朱苏阳1, 彭真1, 邸云婷2, 彭小龙1, 刘东晨2, 官文洁1   

  1. 1.西南石油大学油气藏地质及开发工程全国重点实验室, 四川成都 610500;
    2.中国石油西南油气田分公司页岩气研究院, 四川成都 610000
  • 收稿日期:2023-11-10
  • 通讯作者: 彭真(1999—),女,在读硕士研究生,主要从事油藏工程基础方面的研究工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:2681401337@qq.com
  • 作者简介:朱苏阳(1989—),男,博士,副研究员,主要从事油气藏工程及煤层气藏渗流理论方面的研究工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:suyang.zhu@swpu.edu.cn
  • 基金资助:
    国家自然科学基金项目“基于煤粉群运移动力学特征的煤层气-水-固耦合传质机理研究”(52104036); 四川省自然科学基金项目“考虑纳米尺度效应与微纳跨尺度流动的煤层气临界解吸机制研究”(2023NSFSC0932)

Research progress on shale gas productivity evaluation: concepts, methods and future directions

ZHU SUYANG1, PENG ZHEN1, DI YUNTING2, PENG XIAOLONG1, LIU DONGCHEN2, GUAN WENJIE1   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. Shale Gas Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610000, China
  • Received:2023-11-10

摘要: 页岩气的生产呈现早期高产而后快速递减的动态,快速递减表明初期配产可能过高,不合理配产导致气藏产能衰竭过快,从而影响气井的经济可采储量(EUR),因此,合理评价页岩气井产能对保障气藏稳产具有重要意义。为明确目前页岩气产能评价方法存在的问题和相应的解决思路,研究分析了页岩气产能的特殊内涵,综述了产能流动方程解析、流动方程数值模拟、人工智能3种方法在页岩气产能评价研究中的进展。研究发现页岩气产能明显呈现出分阶段特征,不同生产阶段产能主控因素、流动机制、流动状态都不同,早期产能和后期产能的主控因素差异较大,不同评价方法存在差异化认识。其中,流动方程解析法依赖于对流动机理的认识程度,流动方程数值模拟法结果的验证需要大量可靠数据支撑和气藏工程经验判断,人工智能方法则存在高度不透明、不可解释和泛化能力差的问题。基于此,未来发展应从深化微观和宏观2个层面结合点的页岩气渗流机理着手研究,深化地质建模—应力物性演化—裂缝扩展—多相流动数值模拟—递减分析多维度产能描述融合,并加强机器学习算法的无关机理约束、因果推断的透明度、可解释程度,以规避现有产能评价方法存在的制约性,从而构建合理的页岩气产能评价模型和方法,为准确评价气井产能、实现稳产和高效开发提供理论支撑。

关键词: 页岩气, 产能评价, 流动方程解析法, 流动方程数值模拟法, 人工智能方法, 动态评价

Abstract: Shale gas production has exhibited high initial yields followed by a rapid decline. This rapid decline suggests that early-stage production rates were likely excessive, accelerating the depletion of reservoir productivity and adversely affecting the Estimated Ultimate Recovery (EUR) of shale gas wells. Therefore, accurate and reasonable productivity evaluation plays a key role in ensuring stable reservoir development. To identify the challenges of current shale gas productivity evaluation approaches and explore feasible solutions, this study analyzed the unique connotation of shale gas productivity and reviewed recent progress in three approaches: (1) analytical solution methods of flow equations; (2) numerical simulation methods of flow equations; and (3) artificial intelligence (AI)-based methods. The results revealed that shale gas productivity was highly stage-dependent, with substantial variations in dominant controlling factors, flow mechanisms, and flow regimes across different production stages. Early and late production stages exhibit distinct controlling factors, leading to differentiated perspectives across the various evaluation methods. The analytical solution method relied heavily on a deep understanding of flow mechanisms. Numerical simulation methods require extensive, high-quality datasets and strong reservoir engineering expertise for validation. AI-based methods faced challenges such as high opacity, limited interpretability, and poor generalization. Based on these findings, future research should focus on integrating shale gas flow mechanisms at both micro and macro scales. Emphasis should be placed on the multidimensional integration of geological modeling, stress-petrophysical evolution, fracture propagation, multiphase flow numerical simulation, and decline analysis, enabling more comprehensive productivity characterization. In addition, further work is needed to incorporate mechanism-informed constraints into machine learning algorithms, enhance model transparency through causal inference, and improve interpretability. These advancements aim to avoid the limitations in existing productivity evolution methods and support the development of robust and rational shale gas productivity evaluation models and methods, providing theoretical guidance for accurate well productivity prediction, production stabilization, and efficient resource development.

Key words: shale gas, productivity evaluation, analytical solution method of flow equations, numerical simulation method of flow equations, artificial intelligence methods, dynamic evaluation

中图分类号: 

  • TE37