[1] |
王延永, 彭玺伊, 王晓光, 等. 浮力与毛管力协同作用下层状咸水层中CO2运移机制[J]. 中国石油大学学报(自然科学版), 2023, 47(3): 96-106.
|
|
WANG Yanyong, PENG Xiyi, WANG Xiaoguang, et al. Mechanism of buoyancy and capillary forces dominated CO2 migration in layered saline aquifers[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3): 96-106.
|
[2] |
LI S Y, WANG P, WANG Z J, et al. Strategy to enhance geological CO2 storage capacity in saline aquifer[J]. Geophysical Research Letters, 2023, 50(3): 101431.
|
[3] |
杨术刚, 张坤峰, 刘双星, 等. 页岩渗透率测定方法及影响因素研究进展[J]. 油气地质与采收率, 2023, 30(5): 31-40.
|
|
YANG Shugang, ZHANG Kunfeng, LIU Shuangxing, et al. Research progress on measurement methods and influencing factors of shale permeability[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 31-40.
|
[4] |
张凯, 陈掌星, 兰海帆, 等. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 2023, 30(2): 1-9.
|
|
ZHANG Kai, CHEN Zhangxing, LAN Haifan, et al. Status and prospects of carbon capture, utilization and storage technology[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 1-9.
|
[5] |
孙焕泉, 王海涛, 吴光焕, 等. 稠油油藏注CO2提高采收率影响因素研究[J]. 石油实验地质, 2020, 42(6): 1009-1013.
|
|
SUN Huanquan, WANG Haitao, WU Guanghuan, et al. CO2 EOR factors in heavy oil reservoirs[J]. Petroleum Geology & Experiment, 2020, 42(6): 1009-1013.
|
[6] |
桑树勋, 刘世奇, 朱前林, 等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报, 2023, 48(7): 2700-2716.
|
|
SANG Shuxun, LIU Shiqi, ZHU Qianlin, et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society, 2023, 48(7): 2700-2716.
|
[7] |
曹默雷, 陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报, 2022, 96(5): 1868-1882.
|
|
CAO Molei, CHEN Jianping. The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica, 2022, 96(5): 1868-1882.
|
[8] |
鞠斌山, 杨怡, 杨勇, 等. 高含水油藏CO2驱油与地质封存机理研究现状及待解决的关键问题[J]. 油气地质与采收率, 2023, 30(2): 53-67.
|
|
JU Binshan, YANG Yi, YANG Yong, et al. Present research situation and key pending issues of CO2 flooding and geological storage mechanism in high water-cut reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 53-67.
|
[9] |
BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
|
[10] |
李海燕, 高阳, 王万福, 等. 南堡凹陷CO2在咸水层中的矿化封存机理[J]. 东北石油大学学报, 2014, 38(3): 94-101.
|
|
LI Haiyan, GAO Yang, WANG Wanfu, et al. Experimental study on mineralization storage mechanism of CO2 in saline aquifers of Nanpu depression[J]. Journal of Northeast Petroleum University, 2014, 38(3): 94-101.
|
[11] |
芮振华, 李阳, 薛兆杰, 等. CO2提高油气采收率与地质封存关键技术发展建议[J]. 前瞻科技, 2023, 2(2): 145-160.
|
|
RUI Zhenhua, LI Yang, XUE Zhaojie, et al. Development suggestions for key technologies of CO2-enhanced oil and gas recovery and geological sequestration[J]. Science and Technology Foresight, 2023, 2(2): 145-160.
|
[12] |
杨术刚, 张坤峰, 陈宏坤, 等. 中国油气田采出水回注发展建议[J]. 天然气工业, 2022, 42(11): 106-116.
|
|
YANG Shugang, ZHANG Kunfeng, CHEN Hongkun, et al. Suggestions on the development of produced water reinjection in oil and gas fields in China[J]. Natural Gas Industry, 2022, 42(11): 106-116.
|
[13] |
杨术刚, 刘双星, 蔡明玉, 等. 气田采出水回注协同二氧化碳地质封存分析[J]. 环境科学研究, 2023, 36(11): 2138-2147.
|
|
YANG Shugang, LIU Shuangxing, CAI Mingyu, et al. Discussion on coordination of gas field produced water reinjection and carbon dioxide geological storage[J]. Research of Environmental Sciences, 2023, 36(11): 2138-2147.
|
[14] |
PEARCE J K, DAWSON G K W, SOMMACAL S, et al. Micro CT and experimental study of carbonate precipitation from CO2 and produced water co-injection into sandstone[J]. Energies, 2021, 14(21): 6998.
|
[15] |
PEARCE J K, KHAN C, GOLDING S D, et al. Geological storage of CO2 and acid gases dissolved at surface in production water[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110052.
|
[16] |
ZHANG X Y, LI Q, WEI X C. Optimization of acid gas injection to improve solubility and residual trapping[J]. Greenhouse Gases: Science and Technology, 2021, 11(5): 1001-1023.
|
[17] |
田巍. CO2在老油田地质封存中的赋存状态[J]. 地下空间与工程学报, 2021, 17(2): 618-625.
|
|
TIAN Wei. Study on the existing state of CO2 in geological storage of old oilfields[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 618-625.
|
[18] |
曹小朋, 熊英, 冯其红, 等. 低渗透-致密油藏CO2驱油与封存协同评价方法[J]. 油气地质与采收率, 2023, 30(2): 44-52.
|
|
CAO Xiaopeng, XIONG Ying, FENG Qihong, et al. Collaborative evaluation method of CO2 flooding and storage in low-permeability and tight reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 44-52.
|
[19] |
陈秀林, 王秀宇, 许昌民, 等. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究[J]. 油气藏评价与开发, 2023, 13(3): 296-304.
|
|
CHEN Xiulin, WANG Xiuyu, XU Changmin, et al. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304.
|
[20] |
王璐, 张一帆, 刘逸盛, 等. 页岩储层原油赋存特征及CO2-原油竞争吸附机制分子动力学[J]. 中国石油大学学报(自然科学版), 2023, 47(4): 128-136.
|
|
WANG Lu, ZHANG Yifan, LIU Yisheng, et al. Molecular dynamics analysis on occurrence characteristics of shale oil and competitive adsorption mechanism of CO2 and oil[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(4): 128-136.
|
[21] |
赵续荣, 陈志明, 李得轩, 等. 页岩油井缝网改造后CO2吞吐与埋存特征及其主控因素[J]. 大庆石油地质与开发, 2023, 42(6): 140-150.
|
|
ZHAO Xurong, CHEN Zhiming, LI Dexuan, et al. Characteristics and its main controlling factors of CO2 huff-and-puff and storage of shale oil wells after fracture-network stimulation[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(6): 140-150.
|
[22] |
YANG S, LI X, ZHANG K, et al. The coupling effects of pore structure and rock mineralogy on the pre-Darcy behaviors in tight sandstone and shale[J]. Journal of Petroleum Science and Engineering, 2022, 218: 110945.
|
[23] |
张志军. 鄂尔多斯盆地东北部下三叠统刘家沟组砂岩岩石学特征研究[J]. 中国煤炭地质, 2022, 34(9): 18-26.
|
|
ZHANG Zhijun. Study on the characteristics of sandstone in the lower Triassic Liujiagou formation in the northeastern of the Ordos Basin[J]. Coal Geology of China, 2022, 34(9): 18-26.
|
[24] |
文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘(中国地质大学(北京); 北京大学), 2022, 29(3): 11-24.
|
|
WEN Dongguang, SONG Jian, DIAO Yujie, et al. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers (China University of Geosciences (Beijing); Peking University), 2022, 29(3): 11-24.
|
[25] |
王璐, 于青春. 地下咸水中Ca2+和Mg2+对CO2溶解度的影响[J]. 水文地质工程地质, 2015, 42(5): 22-28.
|
|
WANG Lu, YU Qingchun. The effect of Ca2+ and Mg2+ on the solubility of CO2 in the formation brines [J]. Hydrogeology & Engineering Geology, 2015, 42(5): 22-28.
|
[26] |
林元华, 邓宽海, 宁华中, 等. 二氧化碳在地层水中的溶解度测定及预测模型[J]. 中国石油大学学报(自然科学版), 2021, 45(1): 117-126.
|
|
LIN Yuanhua, DENG Kuanhai, NING Huazhong, et al. CO2 solubility test in formation water and prediction model[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1): 117-126.
|
[27] |
LARA CRUZ J, NEYROLLES E, CONTAMINE F, et al. Experimental study of carbon dioxide solubility in sodium chloride and calcium chloride brines at 333. 15 and 453. 15 K for pressures up to 40 MPa[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 249-261.
|
[28] |
于立松, 张卫东, 吴双亮, 等. 二氧化碳在深部盐水层中溶解封存规律的研究进展[J]. 新能源进展, 2015, 3(1): 75-80.
|
|
YU Lisong, ZHANG Weidong, WU Shuangliang, et al. Research on dissolved sequestration of CO2 in deep saline aquifers[J]. Advances in New and Renewable Energy, 2015, 3(1): 75-80.
|
[29] |
CARVALHO P J, PEREIRA L M C, GONCALVES N P F, et al. Carbon dioxide solubility in aqueous solutions of NaCl: Measurements and modeling with electrolyte equations of state[J]. Fluid Phase Equilibria, 2015, 388: 100-106.
|
[30] |
ENICK R M, KLARA S M. CO2 solubility in water and brine under reservoir conditions[J]. Chemical Engineering Communications, 1990, 90(1): 23-33.
|
[31] |
YAN W, HUANG S, STENBY E H. Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density[J]. International Journal of Greenhouse Gas Control, 2011, 5(6): 1460-1477.
|
[32] |
闫志为, 刘辉利, 张志卫. 温度及CO2对方解石、白云石溶解度影响特征分析[J]. 中国岩溶, 2009, 28(1): 7-10.
|
|
YAN Zhiwei, LIU Huili, ZHANG Zhiwei. Influences of temperature and P C O 2 on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2009, 28(1): 7-10.
|
[33] |
肖林萍, 黄思静. 方解石和白云石溶蚀实验热力学模型及地质意义[J]. 矿物岩石, 2003, 23(1): 113-116.
|
|
XIAO Linping, HUANG Sijing. Model of thermodynamics for dissolution of carbonate and its geological significances[J]. Journal of Mineralogy and Petrology, 2003, 23(1): 113-116.
|