油气藏评价与开发 >
2020 , Vol. 10 >Issue 6: 110 - 114
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.06.017
近绝热条件下稠油低温氧化热效应研究
收稿日期: 2018-07-17
网络出版日期: 2021-01-07
基金资助
国家自然科学基金青年基金“稠油油藏火烧油层过程中焦炭沉积机理及燃烧特征研究”(51704245);中国石油科技创新基金“考虑裂缝热扩展行为的页岩油藏注空气提高采收率机理研究”(2019D-5007-0212)
Thermal effect caused by low-temperature oxidation of heavy crude oil under quasi-adiabatic condition
Received date: 2018-07-17
Online published: 2021-01-07
运用实验室自主研发的高温高压热跟踪补偿仪器开展了吉七稠油在近绝热条件下的低温氧化实验,分析了初期温度、石英砂、岩屑和介质比表面对油样低温氧化热释放的影响。实验结果表明:温度是影响原油低温氧化放热的重要因素,随着初期温度的增加,耗氧能力显著增加,氧化放热量增加,系统压力降低。在初期温度为160 ℃时,前26 h内温度升高10.7 ℃,系统压力降低2.26 MPa,产出气中氧气体积分数仅为2.5 %,这表现出稠油明显的低温氧化热效应。介质比表面的增加与石英砂和岩屑的加入均能有效促进油样低温氧化热效应,但介质比表面效应对稠油低温氧化放热的贡献较小。
潘竟军 , 蒲万芬 , 赵帅 , 坎尼扎提 , 王如燕 , 李一波 , 万征 , 顾飞 . 近绝热条件下稠油低温氧化热效应研究[J]. 油气藏评价与开发, 2020 , 10(6) : 110 -114 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.06.017
The influences of temperature, quartz sand, detritus and specific surface area of medium on thermal release caused by low-temperature oxidation of heavy crude oil of Jiqi Oilfield have been investigated by self-designed high-temperature and high-pressure heat tracking compensation equipment. The results show that the temperature is the significant factor regarding heat release induced by low-temperature oxidation of heavy crude oil. As the initial temperature increases, the increase in capability of oxygen consumption and heat liberated as well as the reduction in pressure. When the initial temperature is 160 ℃, the temperature is improved by 10.7 ℃ in the first 26 hours coupled with the pressure reduction of 2.26 MPa and 2.5 % of effluent oxygen concentration, showing obvious thermal effect caused by low-temperature oxidation of heavy crude oil. Both the increment in the specific surface area and the addition of quartz sand and detritus can promote the thermal release induced by low- temperature oxidation of heavy oil, thereinto, the specific surface effect of medium gives a small contribution to the thermal release of low-temperature oxidation.
[1] | 李睿姗, 何建华, 唐银明, 等. 稠油油藏氮气辅助蒸汽增产机理试验研究[J]. 石油天然气学报, 2006,28(1):72-75. |
[1] | LI R S, HE J H, TANG Y M, et al. Experiment on the mechanism of nitrogen-assisted steam stimulation in heavy oil reservoirs[J]. Journal of Oil and Gas Technology, 2006,28(1):72-75. |
[2] | 马春红, 段永旭. 洼38块蒸汽复合烟道气驱试验研究[J]. 特种油气藏, 2001,8(4):74-78. |
[2] | MA C H, DUAN Y X. Experimental study on compound steam-flue gas drive in block Wa 38[J]. Special Oil & Gas Reservoirs, 2001,8(4):74-78. |
[3] | KUHLMAN M I. Expanded uses of nitrogen, oxygen and rich air for increased production of both light oil and heavy oil[C]// paper SPE-86954-MS presented at the SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, 16-18 March, 2004, Bakersfield, California, USA. |
[4] | ZHAO S, PU W F, VARFOLOMEEV M A, et al. Comprehensive investigations into low temperature oxidation of heavy crude oil[J]. Journal of Petroleum Science and Engineering, 2018,171:835-842. |
[5] | 张旭, 刘建仪, 孙良田, 等. 注空气低温氧化提高轻质油气藏采收率研究[J]. 天然气工业, 2004,24(4):78-80. |
[5] | ZHANG X, LIU J Y, SUN L T, et al. Research on the mechanisms of enhancing recovery of light-oil reservoir by air-injected low-temperature oxidation technique[J]. Natural Gas Industry, 2004,24(4):78-80. |
[6] | ZHAO S, PU W F, SUN B S, et al. Comparative evaluation on the thermal behaviors and kinetics of combustion of heavy crude oil and its SARA fractions[J]. Fuel, 2019,239:117-125. |
[7] | ZHAO S, PU W F, YUAN C D, et al. Thermal behavior and kinetic triplets of heavy crude oil and Its SARA fractions during combustion by high-pressure differential scanning calorimetry[J]. Energy Fuels, 2019,33(4):3176-3186. |
[8] | VARFOLOMEEV M A, GALUKHIN A, NURGALIEV D K, et al. Thermal decomposition of Tatarstan Ashal’cha heavy crude oil and its SARA fractions[J]. Fuel, 2016,186:122-127. |
[9] | SANTOS R G D, VARGAS J A V, TREVISAN O V. Thermal analysis and combustion kinetic of heavy oils and their asphaltene and maltene fractions using accelerating rate calorimetry[J]. Energy & Fuels, 2014,28(11):7140-7148. |
[10] | VARGAS J A V, SANTOS R G D, TREVISAN O V. Evaluation of crude oil oxidation by accelerating rate calorimetry[J]. Journal of Thermal Analysis & Calorimetry, 2013,113(2):897-908. |
[11] | 蒲万芬, 袁成东, 金发扬, 等. 高温高压热跟踪补偿绝热静态氧化及动态氧化驱替装置:CN105044312A[P]. 2015-11-11. |
[11] | PU W F, YUAN C D, JIN F Y, et al. High-temperature and high-pressure thermal tracking compensation heat insulation static oxidization and dynamic oxidization displacement device: CN105044312A[P]. 2015-11-11. |
[12] | WANG J X, WANG T F, FENG C M, et al. Catalytic effect of transition metallic additives on the light oil low-temperature oxidation reaction[J]. Energy & Fuels, 2015,29(6):3545-3555. |
[13] | 寇建益. 温度变化对原油低温氧化过程影响研究[D]. 北京:中国科学院研究生院(理化技术研究所), 2008. |
[13] | KOU J Y. Research on the effect of temperature on the LTO process of crude oil[D]. Beijing: University of Chinese Academy of Sciences(Technical Institute of Physics and Chemistry), 2008. |
[14] | PU W F, PANG S S, JIA H. Using DSC/TG/DTA techniques to reevaluate the effect of clays on crude oil oxidation kinetics[J]. Journal of Petroleum Science & Engineering, 2015,134:123-130. |
[15] | K?K M V. Influence of reservoir rock composition on the combustion kinetics of crude oil[J]. Journal of Thermal Analysis & Calorimetry, 2009,97(2):397-401. |
[16] | YU X C, QU Z, KAN C B, et al. Effect of different clay minerals on heavy oil oxidation during ignition process[J]. Energy & Fuels, 2017,31(11):12839-12847. |
[17] | VARFOLOMEEV M A, NURGALIEV D K, K?K M V. Thermal, kinetics, and oxidation mechanism studies of light crude oils in limestone and sandstone matrix using TG-DTG-DTA: Effect of heating rate and mesh size[J]. Liquid Fuels Technology, 2016,34(19):1647-1653. |
/
〈 | 〉 |