油气藏评价与开发 >
2020 , Vol. 10 >Issue 6: 8 - 16
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.06.002
聚合物驱研究进展及技术展望
收稿日期: 2020-10-29
网络出版日期: 2021-01-07
基金资助
国家科技重大专项“高温高盐油田化学驱提高采收率技术”(2016ZX05011-003)
Research advance and technology outlook of polymer flooding
Received date: 2020-10-29
Online published: 2021-01-07
随着我国对石油的需求量不断增加,对油气田的进一步挖潜显得至关重要。化学驱技术是提高采收率的重要技术之一,而聚合物驱作为最主要的化学驱提高采收率方法,在矿场上已经得到了广泛应用,并取得良好的驱油效果。该文通过对聚合物驱的基本原理以及各种驱油用聚合物的发展现状进行综述,对聚合物驱的矿场应用效果进行总结,展望了聚合物驱在高温高盐等苛刻油藏环境下的发展方向。通过综述可以看出,虽然耐温抗盐共聚物、速溶聚合物、两亲聚合物等功能型聚合物已成功研发,但应用于矿场的聚合物类型仍然有限,如何将新型聚合物的研发成果应用于现场提高采收率是重点发展方向。随着不同聚合物类型的研发,对聚合物驱油机理的研究需要继续深入。
曹绪龙 , 季岩峰 , 祝仰文 , 赵方剑 . 聚合物驱研究进展及技术展望[J]. 油气藏评价与开发, 2020 , 10(6) : 8 -16 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.06.002
With the increasing oil demand in China, it is very important to further tap the potential of oil and gas fields. Chemical flooding technology is one of the important technologies of EOR, and polymer flooding, as the most important method of EOR, has been widely used in the field and achieved good oil displacement effects. Therefore, by summarizing the basic principles of polymer flooding, the development status of various kinds of polymer for oil displacement and the field application effect of polymer flooding, the development direction of polymer flooding in harsh reservoir conditions, such as high temperature and high salt, has been prospected. Through the review, although functional polymers, such as temperature resistant and salt resistant copolymers, instant polymers and amphiphilic polymers, have been successfully developed, the types of polymers used in the field are still limited. How to apply the research and development achievements of new polymers to on-site EOR is the key development direction. With the development of different polymer types, further research on polymer flooding mechanism is needed.
Key words: polymer; oil displacement principle; research advance; field tests; novel polymer
[1] | 钱兴坤, 刘朝全, 姜学峰, 等. 全球石油市场艰难平衡发展风险加大—2019年国内外油气行业发展概述及2020年展望[J]. 国际石油经济, 2020,27(1):2-9. |
[1] | QIAN X K, LIU Z Q, JIANG X F, et al. Overview of the domestic and foreign oil and gas industry development in 2019 and outlook for 2020[J]. International Petroleum Economics, 2020,27(1):2-9. |
[2] | 阿依加马力·艾尼. 高含水油田水驱聚驱后剩余油分布特征研究及提高采收率对策[D]. 青岛:中国石油大学(华东), 2017. |
[2] | AINI A. Study on residual oil distribution after water and polymer flooding for high water cut field and the method of improving oil recovery[D]. Qingdao: China University of Petroleum(East China), 2017. |
[3] | MOGENSENA K, MASALMEHA S. A review of EOR techniques for carbonate reservoirs in challenging geological settings[J]. Journal of Petroleum Science and Engineering, 2020,195:1-13. |
[4] | SCHEXNAYDER P, BAUDOIN N, CHIRDON W M. Enhanced oil recovery from denatured algal biomass: Synergy between conventional and emergent fuels[J]. Fuel, 2020. |
[5] | 王斌, 周迅, 王敏, 等. 三次采油技术在中原油田的应用进展[J]. 油田化学, 2020,37(3):552-556. |
[5] | WANG B, ZHOU X, WANG M, et al. Application of tertiary oil recovery technology in Zhongyuan Oilfield[J]. Oilfield Chemistry, 2020,37(3):552-556. |
[6] | 魏华旭. 三次采油阶段提高采收率的措施[J]. 化学工程与装备, 2020,49(10):105. |
[6] | WEI H X. Measures to enhance oil recovery in tertiary oil recovery stage[J]. Chemical Engineering & Equipment, 2020,49(10):105. |
[7] | 刘玉章. EOR聚合物驱提高采收率技术[M]. 北京: 石油工业出版社, 2006. |
[7] | LIU Y Z. EOR Polymer flooding enhanced oil recovery technology[M]. Beijing: Petroleum Industry Press, 2006. |
[8] | RELLEGADLA S, PRAJAPAT G, AGRAWAL A. Polymers for enhanced oil recovery: Fundamentals and selection criteria[J]. Applied Microbiology & Biotechnology, 2017,101(15):1-16. |
[9] | 侯吉瑞, 陈宇光, 吴璇, 等. 聚合物表面活性剂溶液微观驱油特征[J]. 油田化学, 2020,37(2):292-296. |
[9] | HOU J R, CHEN Y G, WU X, et al. Microscopic oil displacement characteristics of polymeric surfactant solution[J]. Oilfield Chemistry, 2020,37(2):292-296. |
[10] | 金亚杰. 国外聚合物驱油技术研究及应用现状[J]. 非常规油气, 2017,4(1):116-122. |
[10] | JIN Y J. Progress in research and application of polymer flooding technology abroad[J]. Unconventional Oil & Gas, 2017,4(1):116-122. |
[11] | 崔名喆, 张建民, 吴春新, 等. 渤海油田低渗透油藏黏性指进特性分析[J]. 中国石油勘探, 2018,23(5):94-99. |
[11] | CUI M Z, ZHANG J M, WU C X, et al. Analysis of viscous fingering characteristics of low permeability reservoirs in Bohai oilfield[J]. China Petroleum Exploration, 2018,23(5):94-99. |
[12] | ALMANSOUR A O, ALQURAISHI A A, ALHUSSINAN S N, et al. Efficiency pf Enhanced Oil Recovery Using Polymer- ugmented Low Salinity Flooding[J]. Journal of Petroleum Exploration & Production Technology, 2017,7(1):1149-1158. |
[13] | PYE D J. Improved secondary recovery by control of water mobility[J]. Journal of Petroleum Technology, 1964,16(8):911-916. |
[14] | SANDIFORD B B. Laboratory and field studies of water floods using polymer solutions to increase oil recoveries[J]. Journal of Petroleum Technology, 1964,16(8):917-922. |
[15] | 未志杰, 康晓东, 何春百, 等. 非均质稠油油藏聚合物驱吸液剖面变化规律[J]. 科学技术与工程, 2018,18(8):61-66. |
[15] | WEI Z J, KANG X D, HE C B, et al. Polymer flood injection conformance behavior of heterogeneous heavy-oil reservoirs[J]. Science Technology and Engineering, 2018,18(8):61-66. |
[16] | 孙刚. 利用双极化干涉法研究聚合物与原油的相互作用[J]. 油田化学, 2017,34(2):290-295. |
[16] | SUN G. Insight into interactions between polymer and crude oil with dual polarization interferometry[J]. Oilfield Chemistry, 2017,34(2):290-295. |
[17] | ABEL A, McCORMICK C L. Mechanistic insights into temperature-dependent trithiocarbonate chain-end degradation during the RAFT polymerization of N-arylmethacrylamides[J]. Macromolecules, 2016,49(2):465-474. |
[18] | 邢恩浩, 陶鑫, 金磊, 等. 阻力系数和残余阻力系数的测定及影响因素的研究[J]. 辽宁化工, 2016,45(3):284-287. |
[18] | XING E H, TAO X, JIN L, et al. Determination and influence factors of resistance coefficient and residual resistance coefficient[J]. Liaoning Chemical Industry, 2016,45(3):284-287. |
[19] | ZHANG H C, GOU S H, ZHOU L H, et al. Synjournal and properties of betaine hydrophobic modified polymer flooding[J]. Applied Chemical Industry, 2019,48(11):2627-2631. |
[20] | KUR?UN I, IPEKO?LU B, ?ELIK M S, et al. Flocculation and adsorption-desorption mechanism of polymers on albite[J]. Developments in Mineral Processing, 2000,13:24-30. |
[21] | 沈天阳, 徐兆冉. POSS的合成及其在传统聚合物改性中的研究进展[J]. 化工管理, 2018,33(18):29-30. |
[21] | SHEN T Y, XU Z R. Synjournal of POSS and its research progress in modification of traditional polymers[J]. Chemical Engineering & Equipment, 2018,33(18):29-30. |
[22] | ELHAEIAB R, KHARRATC R, MADANI M. Stability, flocculation, and rheological behavior of silica suspensions-augmented polyacrylamide and the possibility to improve polymer flooding functionality[J]. Journal of Molecular Liquids, 2020. |
[23] | YOO H S, KIM H S, SUNG W M, et al. An experimental study on retention characteristics under two-phase flow considering oil saturation in polymer flooding[J]. Journal of Industrial and Engineering Chemistry, 2020,87:120-129. |
[24] | 胡钰灵, 全红平, 黄志宇. 疏水改性黄原胶XG-C16溶液性能及微观结构探究[J]. 应用化工, 2019,48(11):2657-2661. |
[24] | HU Y L, QUAN H P, HUANG Z Y. Study on solution properties and microstructure of hydrophobic modified Xanthan gum—XG-C16[J]. Applied Chemical Industry, 2019,48(11):2657-2661. |
[25] | XU L, XU G Y, LIU T, et al. The comparison of rheological properties of aqueous welan gum and xanthan gum solutions[J]. Carbohydrate Polymers, 2013,92(1):516-522. |
[26] | 祝仰文. 超高分三元共聚物流变特性及驱油性能[J]. 油气地质与采收率, 2018,25(6):78-83. |
[26] | ZHU Y W. Study on rheology and oil displacement properties of ultra high molecular weight terpolymer[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):78-83. |
[27] | 李新勇, 罗攀登, 刘坤, 等. 含有吗啉基的耐温抗盐聚合物合成及性能[J]. 当代化工, 2020,49(5):838-841. |
[27] | LI X Y, LUO P D, LIU K, et al. Synjournal and performance evaluation of salt-resistant and heat-tolerant polymer containing morpholine groups[J]. Contemporary Chemical Industry, 2020,49(5):838-841. |
[28] | 孙群哲, 宋华, 李锋, 等. 三元驱油用磺化聚丙烯酰胺的合成与性能研究[J]. 化学工业与工程技术, 2014,35(3):41-44. |
[28] | SUN Q Z, SONG H, LI F, et al. Study on synjournal and property of terpolymer sulfonated polyacrylamide used in EOR[J]. Journal of Chemical Industry & Engineering, 2014,35(3):41-44. |
[29] | 尚克剑. 两性聚合物的合成及应用[J]. 新疆化工, 2016,41(1):5-10. |
[29] | SHANG K J. Synjournal and application of amphoteric polymers[J]. Xinjiang Chemical Industry, 2016,41(1):5-10. |
[30] | 伊卓, 刘希, 方昭, 等. 三次采油耐温抗盐聚丙烯酰胺的结构与性能[J]. 石油化工, 2015,44(6):770-777. |
[30] | YI Z, LIU X, FANG Z, et al. Structure and properties of temperature-tolerant and salt-resistant polyacrylamide for tertiary oil recovery[J]. Petrochemical Technology, 2015,44(6):770-777. |
[31] | BERRET J F, CALVET D, COLLET A. Fluorocarbon associative polymers[J]. Current Opinion in Colloid & Interface Science, 2003,8(3):296-306. |
[32] | BAI Y R, SHANG X S, WANG Z B, et al. Experimental study on hydrophobically associating hydroxyethyl cellulose flooding system for enhanced oil recovery[J]. Energy & Fuels, 2018,32(6):6713-6725. |
[33] | 王晓藜. 聚丙烯酰胺类疏水缔合聚合物的合成与表征[D]. 济南: 山东大学, 2015. |
[33] | WANG X L. Study on synthesis and characterization of hydrophobically associating acrylamide-based copolymers[D]. Jinan: Shandong University, 2015. |
[34] | DUBIN P L, STRAUSS U P. Hydrophobic hypercoiling in copolymers of maleic acid and alkyl vinyl ethers[J]. Journal of Physical Chemistry, 1970,74(14):2842-2847. |
[35] | MAIA A M S, BORSALI R, BALABAN R C. Comparison between a polyacrylamide and a hydrophobically modified polyacrylamide flood in a sandstone core[J]. Materials Science and Engineering, 2009,29(2):505-509. |
[36] | 马喜平, 廖明飞, 董江洁, 等. 疏水缔合聚合物PADA的合成与性能评价[J]. 应用化工, 2020,49(3):669-673. |
[36] | MA X P, LIAO M F, DONG H J, et al. Synjournal and performance evaluation of hydrophobic association polymer PADA[J]. Applied Chemical Industry, 2020,49(3):669-673. |
[37] | SHARKER K K, TAKESHIMA S, TOYAMA Y, et al. pH- and thermo-responsive behavior of PNIPAM star containing terminal carboxy groups in aqueous solutions[J]. Polymer, 2020: 122735. |
[38] | 刘锐. 超支化缔合聚合物的制备及驱油性能[J]. 西南石油大学学报(自然科学版), 2015,37(2):145-152. |
[38] | LIU R. Preparation of hyperbranched association polyacrylamide and its oil displacement properties[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2015,37(2):145-152. |
[39] | LI X E, XU Z, YIN H Y, et al. Comparative studies on enhanced oil recovery: Thermoviscosifying polymer versus polyacrylamide[J]. Energy & Fuels, 2017,31(3):2479-2487. |
[40] | CHEN Q S, WANG Y, LU Z Y, et al. Thermo-viscosifying polymer used for enhanced oil recovery: Rheological behaviors and core flooding test[J]. Polymer Bulletin, 2013,70(2):391-401. |
[41] | ROY D, BROOKS W L A, SUMERLIN B S. New directions in thermo-responsive polymers[J]. Chemical Society Reviews, 2013,42(17):7214-7243. |
[42] | MOGOLLóN J L, YOMDO S, SALAZAR A, et al. Maximizing a mature field value by combining polymer flooding, well interventions, and infill drilling[C]// paper SPE-194652-MS presented at the SPE Oil and Gas India Conference and Exhibition, 9-11 April, 2019, Mumbai, India. |
[43] | HOURDET D, L’ALLORET F, AUDEBERT R. Reversible thermo-thickening of aqueous polymer solutions[J]. Polymer, 1994,35(12):2624-2630. |
[44] | WANG Y, FENG Y J, WANG B Q, et al. A novel thermoviscosifying water-soluble polymer: Synjournal and aqueous solution properties[J]. Journal of Applied Polymer Science, 2010,116(6):3516-3524. |
[45] | 郭睿威, 吴大成, 鹿现栋, 等. 热缔合接枝物HPAM-g-PNIPAm的温敏增稠性能[J]. 石油化工, 2003,32(8):690-694. |
[45] | GUO R W, WU D C, LU X D, et al. Thermothickening properties of graft copolymer HPAM-g-PNIPAm[J]. Petrochemical Technology, 2003,32(8):690-694. |
[46] | ZHENG C, CHENG Y, WEI Q, et al. Suspension of surface-modified nano-sio2 in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2017,524(1):169-177. |
[47] | ZHENG C C, HUANG Z H. Self-assembly and regulation of hydrophobic associating polyacrylamide with excellent solubility prepared by aqueous two-phase polymerization[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018,555:621-629. |
[48] | ZHANG X F, YANG H B, WANG P X, et al. Oil-displacement characteristics and EOR mechanism of amphiphilic polymers with two molecular weights[C]// paper SPE-192385-MS presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, 23-26 April, 2018, Dammam, Saudi Arabia. |
[49] | 朱洲, 康万利, 杨红斌, 等. 磺基甜菜碱型两亲聚合物的合成及其流变特性[J]. 石油化工高等学校学报, 2017,30(5):32-36. |
[49] | ZHU Z, KANG W L, YANG H B, et al. Synjournal and rheological properties of a sulfobetaine amphiphilic polymer[J]. Journal of Petrochemical Universities, 2017,30(5):32-36. |
[50] | 于斌. 驱油两亲聚合物性能调控方法及增效机理研究[D]. 青岛: 中国石油大学(华东), 2019. |
[50] | YU B. Study on property control of amphiphilic polymers for oil displacement and its synergistic mechanism[D]. Qingdao: China University of Petroleum (East China), 2019. |
[51] | 张超. 延时增粘聚合物增粘特性及运移规律研究[D]. 青岛: 中国石油大学(华东), 2016. |
[51] | ZHANG C. Study on Thickening Properties and Migration Law of Delayed Viscosity Increasing Polymer [D]. Qingdao: China University of Petroleum (East China), 2016. |
[52] | JIANG Z Z, ZHU J R. Cationic polyacrylamide: Synjournal and application in sludge dewatering treatment[J]. Asian Journal of Chemistry, 2014,26(3):629-633. |
[53] | MOE SOE LET K P, MOE SOE LET K P, MANICHAND R N, SERIGHT R S. Polymer flooding a 500-cpoil[C]// paper SPE-154567-MS presented at the SPE Improved Oil Recovery Symposium, 14-18 April, 2012, Tulsa, Oklahoma, USA. |
[54] | 侯巍. 大庆油田三次采油提高采收率技术研究[J]. 化工管理, 2019,34(10):222-224. |
[54] | HOU W. Analysis of influencing factors of polymer flooding and application of stratified injection technology in Daqing Oilfield[J]. Chemical Enterprise Management, 2019,34(10):222-224. |
[55] | LI J R. Experimental investigation and simulation of polymer flooding in high temperature high salinity carbonate reservoirs[D]. Abu Dhabi: The Petroleum Institute, 2015. |
[56] | KAMAL M S, SULTAN A S, AL-MUBAIYEDH U A, et al. Review on polymer flooding: Rheology, adsorption, stability, and field applications of various polymer systems[J]. Polymer Reviews, 2015,55(3):491-530. |
[57] | SHENG J J, LEONHARDT B, AZRI N. Status of polymer-flooding technology[J]. Journal of Canadian Petroleum Technology, 2015,54(2):116-126. |
[58] | ZHU D W, WEI L M, WANG B Q, et al. Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in high-temperature and high-salinity reservoirs[J], Energies, 2014,7(6):3858-3871. |
[59] | 赵方剑, 曹绪龙, 祝仰文, 等. 胜利油区海上油田二元复合驱油体系优选及参数设计[J]. 油气地质与采收率, 2020,27(4):133-139. |
[59] | ZHAO F J, CAO X L, ZHU Y W, et al. Injection parameters optimization of binary combination flooding system in offshore oil field, Shengli oil province[J]. Petroleum Geology and Recovery Efficiency, 2020,27(4):133-139. |
[60] | WU X C, YANG Z J, XU H B, et al. Success and lessons learned from polymerflooding a ultra high temperature and ultra high salinity oil reservoir - A case study from West China[C]// paper SPE-179594-MS presented at the SPE Improved Oil Recovery Conference, 11-13 April, 2016, Tulsa, Oklahoma, USA. |
/
〈 | 〉 |