综合研究

砾岩致密油藏直井重复压裂裂缝形态分析

  • 雷洋洋 ,
  • 王辉 ,
  • 武鑫 ,
  • 杨莉 ,
  • 史乐 ,
  • 王帅
展开
  • 1. 西南石油大学 油气藏地质及开发工程国家重点实验室,四川 成都610500
    2. 新疆油田分公司采油二厂,新疆 克拉玛依834000
    3. 四川长宁天然气开发有限责任公司,四川 宜宾 644000
雷洋洋(1995—),男,在读硕士研究生,研究方向油气田开发。地址:四川省成都市新都区新都大道8号西南石油大学国家重点实验室,邮政编码:610500。E-mail: 2411318690@qq.com

收稿日期: 2021-04-16

  网络出版日期: 2021-10-12

基金资助

国家自然科学基金面上项目“耦合压裂缝网扩展机制的页岩气藏动态模拟研究”(51874251);国家自然科学基金青年科学基金项目“基于位移不连续方法的页岩气藏压裂缝网扩展全三维数值模拟方法研究”(51904257)

Analysis of fracture geometry for refractured vertical wells in tight conglomerate reservoir

  • Yangyang LEI ,
  • Hui WANG ,
  • Xin WU ,
  • Li YANG ,
  • Le SHI ,
  • Shuai WANG
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. The Second Oil Production Plant of Xinjiang Oilfield Branch, Karamay, Xinjiang 834000, China
    3. Sichuan Changning Natural Gas Development Co., Ltd., Yibin, Sichuan 644000, China

Received date: 2021-04-16

  Online published: 2021-10-12

摘要

油井重复压裂是目前国内多数低渗油田恢复老井产能的主要措施之一。新疆某低渗砾岩油藏采用了不同直井重复压裂改造措施,其改造机理尚不清晰。通过建立地质力学模型、基于有限元法的孔隙压力诱导应力变化机理模型以及非结构化油藏数值模型,对重复压裂的裂缝形态及改造措施效果进行研究分析。结果表明:相较于首次压裂和普通重复压裂,体积重复压裂后裂缝形态变化显著。生产前后地应力方位变化不显著,但孔隙压力及地应力变化对水力裂缝的形态的影响较大。对于已经射开的层位,由于地层能量亏空较大,导致其裂缝扩展难度大,缝长较短,缝宽较大;而当存在补层时,由于地层能量充足,裂缝扩展较为容易。补层位置较高井可有效提高储层纵向动用程度,增产效果较好。重复压裂时机对增加产油效果影响明显,及时开展重复压裂更有助于提升单井产油能力。

本文引用格式

雷洋洋 , 王辉 , 武鑫 , 杨莉 , 史乐 , 王帅 . 砾岩致密油藏直井重复压裂裂缝形态分析[J]. 油气藏评价与开发, 2021 , 11(5) : 782 -792 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.05.017

Abstract

Refracturing is currently one of the most used methods to rejuvenate productivity of existing wells in low-permeability reservoirs in China. Different refracturing strategies have been conducted for vertical wells in a tight conglomerate reservoir in the Xinjiang. However, the underlying mechanisms are still unclear. By establishing the geomechanical model, the mechanism model of pore pressure inducing stress change based on the finite element method and the numerical model of unstructured reservoir, the researches on the fracture geometry of refracturing and the effect of different refracturing methods have been carried out. The results are as follows. Compared with the initial fracturing and conventional refracturing, the fracture geometry changes significantly after the volume refracturing. The azimuth of the in-situ stress before and after production does not change significantly, but the changes in pore pressure and in-situ stresses have a great impact on the geometry of hydraulic fractures. For the layers that have been perforated and produced, due to the strong energy loss, the propagation of fracture is more difficult, resulting in short fracture length and wide fracture width. In the case of adding new perforation in un-developed layers, as the formation can provide enough energy, it is easier to propagate fractures. The wells which are at the higher place of the new perforation layers have better productivity after the volume refracturing. The timing of refracturing also has a significant impact on oil production. A proper choice of refracturing time can effectively improve the well productivity.

参考文献

[1] SIEBRITS E, ELBEL J L, DETOURNAY E, et al. Parameters affecting azimuth and length of a secondary fracture during a refracture treatment [C]// Paper SPE-48928-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, September 1998.
[2] 刘洪, 胡永全, 赵金洲, 等. 重复压裂气井三维诱导应力场数学模型[J]. 石油钻采工艺, 2004, 26(2):57-61.
[2] LIU Hong, HU Yongquan, ZHAO Jinzhou, et al. Mathematical model of 3D induced stress field in refracturing gas well[J]. Petroleum drilling technology, 2004, 26(2):57-61.
[3] ELBEL J L, MACK M G. Refracturing: Observations and theories[C]// Paper SPE-25464-MS presented at the SPE Production Operations Symposium, Oklahoma City, Oklahoma, March 1993.
[4] 杨丽娜, 陈勉. 水力压裂中多裂缝间相互干扰力学分析[J]. 石油大学学报(自然科学版), 2003, 27(3):43-45.
[4] YANG Lina, CHEN Mian. Mechanism of multi-fracture interaction in multi-layer hydraulic fracturing[J]. Journal of Southwest Petroleum University (Natural Science), 2003, 27(3):43-45.
[5] ROUSSEL N P, SHARMA M M. Role of stress reorientation in the success of refracture treatments in tight gas sands[J]. SPE Production and Operations, 2012, 27(4):346-355.
[6] 苏玉亮, 詹耀华, 鲁明晶, 等. 人工裂缝作用下地应力场变化规律研究[C]// 油气田勘探与开发国际会议,中国陕西西安, 2018:300-310.
[6] SU Yuliang, ZHAN Yaohua, LU Mingjing, et al. Investigation of production induced stress field under the influence of the artificial initial fracture[C]// International Field Exploration and Development Conference in Xi’an, Shaanxi, Chian, 2018: 300-310.
[7] 邓燕. 重复压裂压新缝力学机理研究[D]. 成都:西南石油学院, 2005.
[7] DENG Yan. Study on mechanical mechanism of refuracturing fracture[D]. Chengdu: Southwest Petroleum University, 2005.
[8] JU Y, LIU P, CHEN J L, et al. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites[J]. Journal of Natural Gas Science and Engineering, 2016, 35(35):614-623.
[9] NAGASO M, MIKADA, H, TAKEKAWA J. The mechanism of complex hydraulic fracture creation due to strength heterogeneity[C]// Paper IPTC-18723-MS presented at the International Petroleum Technology Conference, Bangkok, Thailand, November 2016.
[10] 郑继明, 李永环, 王贤君, 等. 大庆油田致密砂岩储层压裂裂缝扩展形态试验研究[J]. 石油地质与工程, 2019, 33(4):107-110.
[10] ZHENG Jiming, LI Yonghuan, WANG Xianjun, et al. Experimental study on fracture propagation pattern of tight sandstone reservoirs in Daqing oilfield[J]. Petroleum Geology & Engineering, 2019, 33(4):107-110.
[11] 张红静, 徐康泰, 刘立冬, 等. 非稳态渗流下砂砾岩水力裂缝扩展数值模拟[J]. 石油钻采工艺, 2017, 39(6):751-755.
[11] ZHANG Hongjing, XU Kangtai, LIU Lidong, et al. Numerical simulation on hydraulic fracture propagation in glutenite under the effect of unsteady seepage[J]. Oil Drilling & Production Technology, 2017, 39(6):751-755.
[12] 张子麟, 陈勇, 张全胜, 等. 致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究[J]. 油气地质与采收率, 2019, 26(4):132-138.
[12] ZHANG Zhilin, CHEN Yong, ZHANG Quansheng, et al. Numerical simulation on propagation mode of hydraulic fracture approaching gravels in tight glutenite[J]. Petroleum Geology And Recovery Efficiency, 2019, 26(4):132-138.
[13] 赵金洲, 赵金, 胡永全, 等. 水力压裂裂缝应力场变化规律[J]. 天然气地球科学, 2019, 30(12):1677-1683.
[13] ZHAO Jinzhou, ZHAO Jin, HU Yongquan, et al. Study on stress field distribution of hydraulic fracturing[J]. Natural Gas Geosciense, 2019, 30(12):1677-1683.
[14] 俞天喜, 袁峰, 周培尧, 等. 玛南斜坡上乌尔禾组颗粒支撑砾岩裂缝扩展形态[J]. 新疆石油地质, 2021, 42(1):53-62.
[14] YU Tianxi, YUAN feng, ZHOU Peiyao, et al. Fracture propagating shapes in gravel-supported conglomerate reservoirs of Upper Wuerhe Formation on Manan Slope, Mahu Sag[J]. Xinjiang Petroleum Geology, 2021, 42(1):53-62.
[15] 邹雨时, 石善志, 等. 致密砾岩加砂压裂与裂缝导流能力实验——以准噶尔盆地玛湖致密砾岩为例[J]. 石油勘探与开发, 2021,(6):1-8.
[15] ZOU Yushi, SHI Shanzhi, et al. Experimental modeling of sanding fracturing and conductivity of propped fractures in conglomerate: A case study of Mahu tight conglomerate in Junggar Basin, China[J]. Petroleum Exploration and Development, 2021, (6):1-8.
[16] 李宁, 张士诚, 马新仿, 等. 砂砾岩储层水力裂缝扩展规律试验研究[J]. 岩石力学与工程学报, 2017, 36(10):2383-2392.
[16] LI ning, ZHANG Shicheng, MA Xinfang, et al. Experimental study on the propagation mechanism of hydraulic fracture in glutenite formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10):2383-2392.
[17] 刘向君, 熊健, 梁利喜, 等. 玛湖凹陷百口泉组砂砾岩储集层岩石力学特征与裂缝扩展机理[J]. 新疆石油地质, 2018, 39(1):83-91.
[17] LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Rock mechanical characteristics and fracture propagation mechanism of sandy conglomerate reservoirs in Baikouquan Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):83-91.
[18] 李连崇, 李根, 孟庆民, 等. 砂砾岩水力压裂裂缝扩展规律的数值模拟分析[J]. 岩土力学, 2013, 34(5):1501-1507.
[18] LI Lianchong, LI Gen, MENG Qingmin, et al. Numerical simulation of propagation of hydraulic fractures in glutenite formation[J]. Rock and Soil Mechanics, 2013, 34(5):1501-1507.
[19] 孙璐, 刘月田, 王宇, 等. 压敏油藏不规则裂缝形态对压裂水平井产能的影响[J]. 石油科学通报, 2018, 3(1):45-56.
[19] SUN Lu, LIU Yuetian, WANG Yu, et al. Impact of fractured irregular geometry on productivity of multiple fractured horizontal wells in a pressure-sensitive tight oil reservoir[J]. Petroleum Science Bulletin, 2018, 3(1):45-56.
[20] 郭建春, 刘恒, 曾凡辉. 裂缝变缝宽形态对压裂井长期产能的影响[J]. 中国石油大学学报(自然科学版), 2015, 39(1):111-115.
[20] GUO Jianchun, LIU Heng, ZENG Fanhui. Influence of varying fracture width on fractured well’s long-term productivity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(1):111-115.
[21] 李士斌, 官兵, 张立刚, 等. 水平井压裂裂缝局部应力场扰动规律[J]. 油气地质与采收率, 2016, 23(6):112-119.
[21] LI Shibin, GUAN Bing, ZHANG Ligang, et al. Local stress field disturbance law of horizontal well fracturing[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(6):112-119.
[22] 魏臣兴, 练章华, 丁亮亮, 等. 分支井渗流—应力耦合场分析[J]. 岩性油气藏, 2011, 23(4):124-128.
[22] WEI Chenxing, LIAN Zhanghua, DING Liangliang, et al. Analysis of seepage-stress coupling field for lateral wells[J]. Lithologic Reservoirs, 2011, 23(4):124-128.
[23] BRUNO M S, NAKAGAWA F M. Pore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991, 28(4):261-273.
文章导航

/