[1] |
SIEBRITS E, ELBEL J L, DETOURNAY E, et al. Parameters affecting azimuth and length of a secondary fracture during a refracture treatment [C]// Paper SPE-48928-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, September 1998.
|
[2] |
刘洪, 胡永全, 赵金洲, 等. 重复压裂气井三维诱导应力场数学模型[J]. 石油钻采工艺, 2004, 26(2):57-61.
|
|
LIU Hong, HU Yongquan, ZHAO Jinzhou, et al. Mathematical model of 3D induced stress field in refracturing gas well[J]. Petroleum drilling technology, 2004, 26(2):57-61.
|
[3] |
ELBEL J L, MACK M G. Refracturing: Observations and theories[C]// Paper SPE-25464-MS presented at the SPE Production Operations Symposium, Oklahoma City, Oklahoma, March 1993.
|
[4] |
杨丽娜, 陈勉. 水力压裂中多裂缝间相互干扰力学分析[J]. 石油大学学报(自然科学版), 2003, 27(3):43-45.
|
|
YANG Lina, CHEN Mian. Mechanism of multi-fracture interaction in multi-layer hydraulic fracturing[J]. Journal of Southwest Petroleum University (Natural Science), 2003, 27(3):43-45.
|
[5] |
ROUSSEL N P, SHARMA M M. Role of stress reorientation in the success of refracture treatments in tight gas sands[J]. SPE Production and Operations, 2012, 27(4):346-355.
doi: 10.2118/134491-PA
|
[6] |
苏玉亮, 詹耀华, 鲁明晶, 等. 人工裂缝作用下地应力场变化规律研究[C]// 油气田勘探与开发国际会议,中国陕西西安, 2018:300-310.
|
|
SU Yuliang, ZHAN Yaohua, LU Mingjing, et al. Investigation of production induced stress field under the influence of the artificial initial fracture[C]// International Field Exploration and Development Conference in Xi’an, Shaanxi, Chian, 2018: 300-310.
|
[7] |
邓燕. 重复压裂压新缝力学机理研究[D]. 成都:西南石油学院, 2005.
|
|
DENG Yan. Study on mechanical mechanism of refuracturing fracture[D]. Chengdu: Southwest Petroleum University, 2005.
|
[8] |
JU Y, LIU P, CHEN J L, et al. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites[J]. Journal of Natural Gas Science and Engineering, 2016, 35(35):614-623.
doi: 10.1016/j.jngse.2016.09.011
|
[9] |
NAGASO M, MIKADA, H, TAKEKAWA J. The mechanism of complex hydraulic fracture creation due to strength heterogeneity[C]// Paper IPTC-18723-MS presented at the International Petroleum Technology Conference, Bangkok, Thailand, November 2016.
|
[10] |
郑继明, 李永环, 王贤君, 等. 大庆油田致密砂岩储层压裂裂缝扩展形态试验研究[J]. 石油地质与工程, 2019, 33(4):107-110.
|
|
ZHENG Jiming, LI Yonghuan, WANG Xianjun, et al. Experimental study on fracture propagation pattern of tight sandstone reservoirs in Daqing oilfield[J]. Petroleum Geology & Engineering, 2019, 33(4):107-110.
|
[11] |
张红静, 徐康泰, 刘立冬, 等. 非稳态渗流下砂砾岩水力裂缝扩展数值模拟[J]. 石油钻采工艺, 2017, 39(6):751-755.
|
|
ZHANG Hongjing, XU Kangtai, LIU Lidong, et al. Numerical simulation on hydraulic fracture propagation in glutenite under the effect of unsteady seepage[J]. Oil Drilling & Production Technology, 2017, 39(6):751-755.
|
[12] |
张子麟, 陈勇, 张全胜, 等. 致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究[J]. 油气地质与采收率, 2019, 26(4):132-138.
|
|
ZHANG Zhilin, CHEN Yong, ZHANG Quansheng, et al. Numerical simulation on propagation mode of hydraulic fracture approaching gravels in tight glutenite[J]. Petroleum Geology And Recovery Efficiency, 2019, 26(4):132-138.
|
[13] |
赵金洲, 赵金, 胡永全, 等. 水力压裂裂缝应力场变化规律[J]. 天然气地球科学, 2019, 30(12):1677-1683.
|
|
ZHAO Jinzhou, ZHAO Jin, HU Yongquan, et al. Study on stress field distribution of hydraulic fracturing[J]. Natural Gas Geosciense, 2019, 30(12):1677-1683.
|
[14] |
俞天喜, 袁峰, 周培尧, 等. 玛南斜坡上乌尔禾组颗粒支撑砾岩裂缝扩展形态[J]. 新疆石油地质, 2021, 42(1):53-62.
|
|
YU Tianxi, YUAN feng, ZHOU Peiyao, et al. Fracture propagating shapes in gravel-supported conglomerate reservoirs of Upper Wuerhe Formation on Manan Slope, Mahu Sag[J]. Xinjiang Petroleum Geology, 2021, 42(1):53-62.
|
[15] |
邹雨时, 石善志, 等. 致密砾岩加砂压裂与裂缝导流能力实验——以准噶尔盆地玛湖致密砾岩为例[J]. 石油勘探与开发, 2021,(6):1-8.
|
|
ZOU Yushi, SHI Shanzhi, et al. Experimental modeling of sanding fracturing and conductivity of propped fractures in conglomerate: A case study of Mahu tight conglomerate in Junggar Basin, China[J]. Petroleum Exploration and Development, 2021, (6):1-8.
|
[16] |
李宁, 张士诚, 马新仿, 等. 砂砾岩储层水力裂缝扩展规律试验研究[J]. 岩石力学与工程学报, 2017, 36(10):2383-2392.
|
|
LI ning, ZHANG Shicheng, MA Xinfang, et al. Experimental study on the propagation mechanism of hydraulic fracture in glutenite formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10):2383-2392.
|
[17] |
刘向君, 熊健, 梁利喜, 等. 玛湖凹陷百口泉组砂砾岩储集层岩石力学特征与裂缝扩展机理[J]. 新疆石油地质, 2018, 39(1):83-91.
|
|
LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Rock mechanical characteristics and fracture propagation mechanism of sandy conglomerate reservoirs in Baikouquan Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):83-91.
|
[18] |
李连崇, 李根, 孟庆民, 等. 砂砾岩水力压裂裂缝扩展规律的数值模拟分析[J]. 岩土力学, 2013, 34(5):1501-1507.
|
|
LI Lianchong, LI Gen, MENG Qingmin, et al. Numerical simulation of propagation of hydraulic fractures in glutenite formation[J]. Rock and Soil Mechanics, 2013, 34(5):1501-1507.
|
[19] |
孙璐, 刘月田, 王宇, 等. 压敏油藏不规则裂缝形态对压裂水平井产能的影响[J]. 石油科学通报, 2018, 3(1):45-56.
|
|
SUN Lu, LIU Yuetian, WANG Yu, et al. Impact of fractured irregular geometry on productivity of multiple fractured horizontal wells in a pressure-sensitive tight oil reservoir[J]. Petroleum Science Bulletin, 2018, 3(1):45-56.
|
[20] |
郭建春, 刘恒, 曾凡辉. 裂缝变缝宽形态对压裂井长期产能的影响[J]. 中国石油大学学报(自然科学版), 2015, 39(1):111-115.
|
|
GUO Jianchun, LIU Heng, ZENG Fanhui. Influence of varying fracture width on fractured well’s long-term productivity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(1):111-115.
|
[21] |
李士斌, 官兵, 张立刚, 等. 水平井压裂裂缝局部应力场扰动规律[J]. 油气地质与采收率, 2016, 23(6):112-119.
|
|
LI Shibin, GUAN Bing, ZHANG Ligang, et al. Local stress field disturbance law of horizontal well fracturing[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(6):112-119.
|
[22] |
魏臣兴, 练章华, 丁亮亮, 等. 分支井渗流—应力耦合场分析[J]. 岩性油气藏, 2011, 23(4):124-128.
|
|
WEI Chenxing, LIAN Zhanghua, DING Liangliang, et al. Analysis of seepage-stress coupling field for lateral wells[J]. Lithologic Reservoirs, 2011, 23(4):124-128.
|
[23] |
BRUNO M S, NAKAGAWA F M. Pore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991, 28(4):261-273.
doi: 10.1016/0148-9062(91)90593-B
|