油气藏评价与开发 >
2022 , Vol. 12 >Issue 3: 534 - 544
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.03.016
基于高效架桥和致密填充的深层裂缝性储层堵漏配方设计方法研究
收稿日期: 2021-07-08
网络出版日期: 2022-06-24
基金资助
国家自然科学基金项目“基于逾渗和固液两相流理论的裂缝性储层工作液漏失损害预测与控制”(51604236);国家自然科学基金项目“海相深层油气富集机理与关键工程技术基础研究”(U19B6003);四川省科技计划项目“保护储层并改善优势天然裂缝导流能力的钻井预撑裂缝堵漏基础研究”(2018JY0436);非常规油气层保护四川省青年科技创新研究团队项目“保护储层并改善优势天然裂缝导流能力的钻井预撑裂缝堵漏基础研究”(2021JDTD0017)
Design method of plugging formula for deep naturally fractured reservoir based on efficient bridging and compact filling
Received date: 2021-07-08
Online published: 2022-06-24
钻井液漏失是制约深层超深层钻井的重要工程技术难题,储层段井漏是钻完井阶段最严重的储层损害方式。利用桥接堵漏材料对裂缝漏失通道进行封堵,是储层段钻井液漏失控制的主要方式。但是,桥接堵漏配方设计常采用经验或者半经验的方法,导致一次堵漏成功率低,堵漏效果差。通过CFD-DEM模拟(一种典型的基于欧拉—拉格朗日参考系的离散摸拟方法),明确了架桥滞留、堆积填充、承压封堵是裂缝封堵层形成过程中的3个关键环节,考虑堵漏材料的高效架桥和致密填充,基于“绝对架桥加量”概念和紧密堆积理论,提出了承压堵漏实验配方设计新方法。采用“绝对架桥加量”为优化参数,确定配方中架桥材料加量;利用“补差法”改进了传统紧密堆积理论,克服了其对粒度分布不连续或重叠分布的各级填充材料适应性差的缺陷,确定堵漏配方中填充材料加量。室内实验和现场试验结果表明,深层裂缝性储层堵漏配方设计方法,可实现深层裂缝性储层堵漏配方快速高效设计,有效保证深层裂缝性储层堵漏配方封堵裂缝效果,有效减少堵漏配方中材料总用量,节约材料成本。提出的方法为深层裂缝性储层堵漏配方设计提供了新思路和理论依据。
许成元 , 阳洋 , 蒲时 , 康毅力 , 李大奇 , 张杜杰 , 闫霄鹏 , 杨斌 . 基于高效架桥和致密填充的深层裂缝性储层堵漏配方设计方法研究[J]. 油气藏评价与开发, 2022 , 12(3) : 534 -544 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.03.016
Drilling fluid loss is an important engineering and technical problem that restricts deep and ultra-deep drilling, and the well loss in reservoir interval is the most serious reservoir damage mode in drilling and completion stage. It is the main way to control lost circulation to use the bridging plugging material to block the fracture leakage channel. However, the design of bridge plugging formula often adopts the empirical or semi-empirical method, leading to low plugging success rate and poor plugging effect. By the CFD-DEM simulation, it is clear that the bridge retention, accumulation filling and pressurized plugging are three key links in the formation process of fracture sealing layer. Considering the efficient bridging and compact filling of the plugging material, and based on the concept of “absolute bridge addition” and the theory of tight packing, a new experimental formula design method for pressurized plugging is proposed. “Absolute bridging amount” is used as a optimization parameter to determine the bridging material amount in the formula. The traditional compact packing theory is improved by the “complementation method”, which overcomes its defects of poor adaptability to the filling materials with discontinuous or overlapping particle size distribution, and determines the filling material addition in the plugging formula. The results of laboratory and field experiments show that the proposed method can realize the rapid and efficient design of the formula for deep naturally fractured reservoir, effectively ensure the sealing effect of the formula for deep naturally fractured reservoir and reduce the total amount of materials in the formula and save the material cost. The proposed method provides a new idea and theoretical basis for the design of plugging formula for deep naturally fractured reservoir.
[1] | 徐同台, 刘玉杰. 钻井工程防漏堵漏技术[M]. 北京: 石油工业出版社, 1997. |
[1] | XU Tongtai, LIU Yujie. Technology of lost circulation prevention and control during drilling engineering[M]. Beijing: Petroleum Industry Press, 1997. |
[2] | 孙金声, 汪世国, 张毅, 等. 水基钻井液成膜技术研究[J]. 钻井液与完液, 2003, 20(6):6-10. |
[2] | SUN Jinsheng, WANG Shiguo, ZHANG Yi, et al. Study on membrane generating technology of water based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2003, 20(6): 6-10. |
[3] | 孙金声, 许成元, 康毅力, 等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术, 2020, 48(4):1-10. |
[3] | SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. |
[4] | 张杜杰, 金军斌, 陈瑜, 等. 深部裂缝性致密储层随钻堵漏材料补充时机研究[J]. 特种油气藏, 2020, 27(6):158-164. |
[4] | ZHANG Dujie, JIN Junbin, CHEN Yu, et al. Study on the supplement timing of leakage stoppage materials while drilling for deep fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 158-164. |
[5] | 刘厚彬, 崔帅, 孟英峰, 等. 裂缝性碳酸盐岩微细观组构及力学性能研究[J]. 特种油气藏, 2020, 27(1):155-161. |
[5] | LIU Houbin, CUI Shuai, MENG Yingfeng, et al. Drilling & production engineering micro-mechanical structure and mechanical properties of fractured carbonate rock[J]. Special Oil & Gas Reserviors, 2020, 27(1): 155-161. |
[6] | ALBERTY M W, MCLEAN M R. Fracture gradients in depleted reservoirs-drilling wells in late reservoir life[C]// Paper SPE-67740-SM presented at the SPE/IADC Drilling Conference, Amsterdam, Netherlands, February 2001. |
[7] | 张金波, 鄢捷年, 赵海燕. 优选暂堵剂粒度分布的新方法[J]. 钻井液与完井液, 2004, 21(5):4-7. |
[7] | ZHANG Jinbo, YAN Jienian, ZHAO Haiyan. A new method for optimizing the size distribution of temporary plugging agent[J]. Drilling Fluid & Completion Fluid, 2004, 21(5): 4-7. |
[8] | 张世锋, 王相, 崔新颖, 等. 基于改进理想充填理论的堵漏颗粒粒度分布设计方法[J]. 常州大学学报(自然科学版), 2021, 33(3):54-59. |
[8] | ZHANG Shifeng, WANG Xiang, CUI Xinying, et al. Modified ideal packing theory to optimize size distribution of plugging particle for fracture lost circulation control[J]. Journal of Changzhou University(Natural Science Edition), 2021, 33(3): 54-59. |
[9] | 王书琪, 唐继平, 张斌, 等. 塔里木山前构造带高密度钻井液堵漏技术[J]. 钻井液与完井液, 2006, 23(1):76-77. |
[9] | WANG Shuqi, TANG Jiping, ZHANG Bin, et al. Plugging technology of high density drilling fluid in tarim piedmont structural belt[J]. Drilling Fluid & Completion Fluid, 2006, 23(1): 76-77. |
[10] | 刘金华, 王治法, 常连玉, 等. 复合堵漏剂DL-1封堵裂缝的室内研究[J]. 钻井液与完井液, 2008, 25(1):50-52. |
[10] | LIU Jinhua, WANG Zhifa, CHANG Lianyu, et al. Indoor study on plugging crack with compound plugging agent DL-1[J]. Drilling Fluid & Completion Fluid, 2008, 25(1): 50-52. |
[11] | 康毅力, 余海峰, 许成元, 等. 毫米级宽度裂缝封堵层优化设计[J]. 天然气工业, 2014, 34(11):88-94. |
[11] | KANG Yili, YU Haifeng, XU Chengyuan, et al. An optimal design for millimeter-wide fracture plugged zones[J]. Natural Gas Industry, 2014, 34(11): 88-94. |
[12] | 许成元, 张敬逸, 康毅力, 等. 裂缝封堵层结构形成与演化机制[J]. 石油勘探与开发, 2021, 48(1):202-210. |
[12] | XU Chengyuan, ZHANG Jingyi, KANG Yili, et al. Structural formation and evolution mechanisms of fracture plugging zone[J]. Petroleum Exploration and Development, 2021, 48(1): 202-210. |
[13] | MONDAL S, WU C H, SHARMA M M. Coupled CFD-DEM simulation of hydrodynamic bridging at constrictions[J]. International Journal of Multiphase Flow, 2016, 84: 245-263. |
[14] | SUN H, XU S, PAN X D, et al. Investigating the jamming of particles in a three-dimensional fluid-driven flow via coupled CFD-DEM simulations[J]. International Journal of Multiphase Flow, 2019, 114: 140-153. |
[15] | XU C Y, XIE Z C, KANG Y L, et al. A novel material evaluation method for lost circulation control and formation damage prevention in deep fractured tight reservoir[J]. Energy, 2020, 210: 118574. |
[16] | XU C Y, KANG Y L, YOU L J, et al. Lost-circulation control for formation-damage prevention in naturally fractured reservoir: Mathematical model and experimental study[J]. SPE Journal, 2017, 22(5): 1654-1670. |
[17] | 许成元, 闫霄鹏, 康毅力, 等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发, 2020, 47(2):399-408. |
[17] | XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399-408. |
[18] | 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发, 2021, 48(3):630-638. |
[18] | SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3): 630-638. |
[19] | 康毅力, 王凯成, 许成元, 等. 深井超深井钻井堵漏材料高温老化性能评价[J]. 石油学报, 2019, 40(2):215-223. |
[19] | KANG Yili, WANG Kaicheng, XU Chengyuan, et al. High-temperature aging property evaluation of lost circulation materials in deep and ultra-deep well drilling[J]. Acta Petrolei Sinica, 2019, 40(2): 215-223. |
[20] | 闫宏伟, 袁飞, 李亚杰, 等. 埋地管道泄漏内封堵装置设计与研究[J]. 石油机械, 2020, 48(4):142-148. |
[20] | YAN Hongwei, YUAN Fei, LI Yajie, et al. Design and research of internal sealing device for buried pipeline leakage[J]. China Petroleum Machinery, 2020, 48(4): 142-148. |
[21] | 陈俊文, 于浩, 张玉明, 等. 双金属衬里复合管制管过程紧密度影响因素研究[J]. 石油机械, 2021, 49(2):133-142. |
[21] | CHEN Junwen, YU Hao, ZHANG Yuming, et al. Study on the influencing factors of compactness of bimetal-lined composite pipe during forming process[J]. China Petroleum Machinery, 2021, 49(2): 133-142. |
[22] | 吕晓平, 田径, 王向阳, 等. 钻井液油水比对2Cr13套管摩擦学性能的影响[J]. 石油机械, 2020, 48(9):121-127. |
[22] | LYU Xiaoping, TIAN Jing, WANG Xiangyang, et al. The effect of oil-water ratio of drilling fluid on the tribological properties of 2Cr13 casing[J]. China Petroleum Machinery, 2020, 48(9): 121-127. |
[23] | 宣扬, 刘珂, 郭科佑, 等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏, 2020, 27(3):163-168. |
[23] | XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low-friction drilling fluid technology of ultra-deep horizontal well in Shunbei oil & gas field[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 163-168. |
[24] | SAVARI S, WHITFILL D L, JAMISON D E, et al. A method to evaluate lost circulation materials-investigation of effective wellbore strengthening applications[J]. SPE Drilling & Completion, 2014, 29(3): 329-333. |
[25] | OQUENDO-PATIÑO W F, ESTRADA N. Densest arrangement of frictionless polydisperse sphere packings with a power-law grain size distribution[J]. Granular Matter, 2020, 22(4): 1-8. |
/
〈 | 〉 |