方法理论

考虑地质断层激活后的CO2封存流体泄漏模型及数值分析

  • 张立松 ,
  • 蒋梦罡 ,
  • 李文杰 ,
  • 张士岩 ,
  • 陈劭颖 ,
  • 王伟 ,
  • 孙致学
展开
  • 1.中国石油大学(华东)储运与建筑工程学院,山东 青岛 266580
    2.中国石油大学(华东)石油工程学院,山东 青岛 266580
张立松(1982—),男,博士,副教授,本刊青编委,主要从事稠油热采和CO2地质封存与利用方面的研究。地址:山东省青岛市黄岛区长江西路66号,邮政编码:266580。E-mail: lisongzhang1982@163.com

收稿日期: 2021-12-16

  网络出版日期: 2022-09-27

基金资助

山东省自然科学基金项目“基于YADE种群平衡法的原始储层条件下煤岩破碎—块体滑落—井眼坍塌演化机理研究”(ZR2021ME024);中央高校基本科研业务费专项资金项目“基于种群平衡法的破碎性煤层钻井眼坍塌细观演化机理”(19CX02034A)

Mathematical model and numerical analysis for leakage of fluid along geological fault during CO2 storage

  • Lisong ZHANG ,
  • Menggang JIANG ,
  • Wenjie LI ,
  • Shiyan ZHANG ,
  • Shaoying CHEN ,
  • Wei WANG ,
  • Zhixue SUN
Expand
  • 1. College of Pipeline and Civil Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China
    2. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China

Received date: 2021-12-16

  Online published: 2022-09-27

摘要

地质断层活化后,流体(CO2、盐水、淡水)沿断层泄漏是CO2地质封存中不可忽视的关键问题,因此,推导了不同阶段流体沿断层的泄漏速度方程,并结合质量守恒方程和能量守恒方程,建立地质活化断层的CO2封存流体泄漏模型,获取了流体沿断层泄漏的关键参数(泄漏时间和泄漏量)。模拟不同参数对流体泄漏时间和泄漏量的影响:随着CO2注入速度增快和储层渗透率增大,CO2沿断层泄漏的初始时间提前,持续时间延长,泄漏量增加;随着断层渗透率的增加,CO2沿断层泄漏的初始时间和持续时间没有变化,而CO2泄漏量增加;相较于CO2注入速度和储层渗透率,断层渗透率对盐水和淡水泄漏影响最大。综上所述:流体沿断层泄漏的先后顺序为盐水、CO2、淡水;流体沿断层泄漏的持续时间由长到短依次为:CO2、淡水、盐水;流体沿断层的泄漏量由大到小为CO2、盐水、淡水。

本文引用格式

张立松 , 蒋梦罡 , 李文杰 , 张士岩 , 陈劭颖 , 王伟 , 孙致学 . 考虑地质断层激活后的CO2封存流体泄漏模型及数值分析[J]. 油气藏评价与开发, 2022 , 12(5) : 754 -763 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.007

Abstract

The leakage of fluid (CO2, brine and freshwater) along fault is a crucial issue that cannot be ignored during CO2 geological storage. For this reason, the equations to describe the fluid leakage rate along faults in different stages are derived. Then, these equations are combined with mass and energy conservation equations to establish the fluid leakage model in CO2 storage processes by considering geologically activated faults. In such case, the crucial parameters (i.e., leakage time and leakage amount) for fluid leakage along a fault are obtained. The results of the effects of different parameters on leakage time and amount show the advanced initial time of CO2 leakage, the extended duration and the increased leakage amount of CO2, with CO2 injection rate and reservoir permeability increasing. Meanwhile, the initial time and duration of CO2 leakage are unchanged while the leakage amount of CO2 is increased, when increasing the fault permeability. In addition, the fault permeability has the greatest impact on the leakage amount of brine and freshwater, compared to CO2 injection rate and reservoir permeability. The numerical results show that brine starts to leak earliest, followed by CO2, freshwater. Meanwhile, the duration of CO2 leakage along a fault is the longest, while the duration of brine leakage is the shortest. Additionally, the leakage amount of CO2 is the largest, followed by brine leakage amount and the freshwater leakage amount.

参考文献

[1] 李毅, 张可霓, 王笑雨. CO2地质封存泄漏对浅层地下水影响的分析评价[J]. 工程勘察, 2014, 42(11):44-50.
[1] LI Yi, ZHANG Keni, WANG Xiaoyu. Assessment of the impact on shallow groundwater system by leakage of CO2 geological storage[J]. Engineering Investigation, 2014, 42(11): 44-50.
[2] 高飞, 邓存宝, 王雪峰, 等. 采空区煤层封存CO2影响因素分[J]. 环境工程学报, 2017, 11(8):4653-4659.
[2] GAO Fei, DENG Cunbao, WANG Xuefeng, et al. Analysis on factors affecting sequestration of CO2 in coal seam[J]. Chinese Journal of Environmental Engineering, 2017, 11(8): 4653-4659.
[3] 张大同, 滕霖, 李玉星, 等. 高含CO2的多相流体系节流效应模型[J]. 油气储运, 2018, 37(10):1128-1134.
[3] ZHANG Datong, TENG Lin, LI Yuxing, et al. Throttling effect model for multiphase flow system with high CO2 content[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1128-1134.
[4] 张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程报, 2021, 15(7):2344-2355.
[4] ZHANG Yapeng, CUI Longpeng, LIU Yanfang, et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2344-2355.
[5] 李小春, 袁维, 白冰. CO2地质封存力学问题的数值模拟方法综述[J]. 岩土力学, 2016, 37(6):1762-1772.
[5] LI Xiaochun, YUAN Wei, BAI Bing. A review of numerical simulation methods for geomechanical problems induced by CO2 geological storage[J]. Rock and Soil Mechanics, 2016, 37(6): 1762-1772.
[6] 吴秀章. 中国二氧化碳捕集与地质封存首次规模化探索[M]. 北京: 科学出版社, 2013.
[6] WU Xiuzhang. Carbon dioxide capture and geological storage the first massive exploration in China[M]. Beijing: Science Press, 2013.
[7] 谷丽冰, 李治平, 侯秀林. 二氧化碳地质埋存研究进展[J]. 地质科技情报, 2008, 27(4):80-84.
[7] GU Libing, LI Zhiping, HOU Xiulin. Existing state about geological storage of carbon dioxide[J]. Geological Science and Technology Information, 2008, 27(4): 80-84.
[8] 罗二辉, 胡永乐, 李昭. CO2地质埋存技术与应用[J]. 新疆石油天然气, 2013, 9(3):14-21.
[8] LUO Erhui, HU Yongle, LI Zhao. Storage of CO2 in geologic for mations and its application[J]. Xinjiang Oil & Gas, 2013, 9(3): 14-21.
[9] 田巍. 老油田注CO2开发提高注气能力的方法[J]. 石油与天然气化工, 2020, 49(3):72-77.
[9] TIAN Wei. A method of improving gas injection capacity by CO2 injection for old oilfield[J]. Chemical Engineering of Oil & Gas, 2020, 49(1): 72-77.
[10] 宋黎光, 赵凤兰, 冯海如, 等. 低渗透油藏渗透率对CO2驱重力超覆的影响规律[J]. 油气地质与采收率, 2020, 27(4):111-116.
[10] SONG Liguang, ZHAO Fenglan, FENG Hairu, et al. Influence of permeability on gravity segregation during CO2 flooding in low-permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 111-116.
[11] 谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38(S1):181-188.
[11] XIE Jian, WEI Ning, WU Lizhou, et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics, 2017, 38(S1): 181-188.
[12] 胡叶军, 王媛, 刘阳. 深部咸水层二氧化碳沿断层泄漏的运移规律研究[J]. 科学技术与工程, 2015, 15(4):40-46.
[12] HU Yejun, WANG Yuan, LIU Yang. Study on migration mechanism of carbon dioxide in deep saline aquifers during leakage along a fault[J]. Science Technology and Engineering, 2015, 15(4): 40-46.
[13] LU C H, SUN Y W, BUSCHECK T A, et al. Uncertainty quantification of CO2 leakage through a fault with multiphase and non-isothermal effects[J]. Greenhouse Gases Science & Technology, 2012, 2(6): 445-459.
[14] 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1):72-76.
[14] TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research of the effect of CO2 injection on porous media and fluid property in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76.
[15] 王志兴, 赵凤兰, 冯海如, 等. 边水断块油藏水平井组CO2协同吞吐注入量优化实验研究[J]. 油气地质与采收率, 2020, 27(1):75-80.
[15] WANG Zhixing, ZHAO Fenglan, FENG Hairu, et al. Experimental research on injection volumes optimization of CO2 huff and puff in horizontal well group in fault block reservoirs with edge water[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 75-80.
[16] 张志雄, 谢健, 戚继红, 等. 地质封存二氧化碳沿断层泄漏数值模拟研究[J]. 水文地质工程地质, 2018, 45(2):109-116.
[16] ZHANG Zhixiong, XIE Jian, QI Jihong, et al. Numerical simulation of CO2 leakage along faults from geologic carbon dioxide sequestration[J]. Hydrogeological Engineering Geology, 2018, 45(2): 109-116.
[17] 夏盈莉, 许天福, 杨志杰, 等. 深部储层中CO2沿断层泄漏量的影响因素[J]. 环境科学研究, 2017, 30(10):1533-1541.
[17] XIA Yingli, XU Tianfu, YANG Zhijie, et al. Factors influencing amount of CO2 leakage through a fault zone in deep storage aquifer[J]. Environmental Science Research, 2017, 30(10): 1533-1541.
[18] 胡叶军, 王媛, 任杰. 咸水层封存CO2沿断层带泄漏的影响因素分析[J]. 中国科技论文, 2016, 11(13):1437-1444.
[18] HU Yejun, WANG Yuan, REN Jie. Analysis of factors affecting the leakage of CO2 along the fault zone in deep saline aquifers[J]. Chinese Scientific Papers, 2016, 11(13): 1437-1444.
[19] ZHANG L S, ZHANG S Y, JIANG W Z, et al. A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage[J]. Energy, 2018, 165(B): 1178-1190.
[20] ANNUNZIATELLIS A, BEAUBIEN S E, BIGI S, et al. Gas migration along fault systems and through the vadose zone in the Latera Caldera (central Italy): Implications for CO2 geological storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 353-372.
[21] KAMPMAN N, BICKLE M J, MASKELL A, et al. Drilling and sampling a natural CO2 reservoir: Implications for fluid flow and CO2-fluid-rock reactions during CO2 migration through the overburden[J]. Chemical Geology, 2014, 369(4): 51-82.
[22] AOYAGI R, KITAMURA O, ITAOKA K, et al. Study on role of simulation of possible leakage from geological CO2 storage in sub-seabed for environmental impact assessment[J]. Energy Procedia, 2011, 4: 3881-3888.
[23] ANGELI M, FALEIDE J I, GABRIELSEN R H. Evaluating seal quality for potential storage sites in the Norwegian North Sea[J]. Energy Procedia, 2013, 37(1): 4853-4862.
[24] PRUESS K. Numerical simulation of CO2 leakage from a geologic disposal reservoir including transitions from super-to subcritical conditions and boiling of liquid CO2[J]. Society of Petroleum Engineers Journal, 2003, 9(2): 237-248.
[25] PRUESS K. Numerical simulations show potential for strong nonisothermal effects during fluid leakage from a geologic disposal reservoir for CO2[J]. Geophysical Monograph Series, 2005, 162: 81-89.
[26] PRUESS K. Integrated modeling of CO2 storage and leakage scenarios including transitions between super-and subcritical conditions, and phase change between liquid and gaseous CO2[J]. Greenhouse Gas Science and Technology, 2011, 1(3): 237-247.
[27] SHAFAEI M J, ABEDI J, HASSANZADEH H, et al. Reverse gas-lift technology for CO2 storage into deep saline aquifers[J]. Energy, 2012, 45(1): 840-849.
[28] ZIEMKIEWICZ P, STAUFFER P H, SULLIVAN-GRAHAM J, et al. Opportunities for increasing CO2 storage in deep, saline formations by active reservoir management and treatment of extracted formation water: Case study at the GreenGen IGCC facility, Tianjin, PR China[J]. International Journal of Greenhouse Gas Control, 2016, 54(2): 538-556.
[29] PRUESS K. The TOUGH codes: A family of simulation tools for multiphase flow and transport processes in permeable media[J]. Vadose Zone Journal, 2004, 3(3): 738-746.
文章导航

/