[1] |
李毅, 张可霓, 王笑雨. CO2地质封存泄漏对浅层地下水影响的分析评价[J]. 工程勘察, 2014, 42(11):44-50.
|
|
LI Yi, ZHANG Keni, WANG Xiaoyu. Assessment of the impact on shallow groundwater system by leakage of CO2 geological storage[J]. Engineering Investigation, 2014, 42(11): 44-50.
|
[2] |
高飞, 邓存宝, 王雪峰, 等. 采空区煤层封存CO2影响因素分[J]. 环境工程学报, 2017, 11(8):4653-4659.
|
|
GAO Fei, DENG Cunbao, WANG Xuefeng, et al. Analysis on factors affecting sequestration of CO2 in coal seam[J]. Chinese Journal of Environmental Engineering, 2017, 11(8): 4653-4659.
|
[3] |
张大同, 滕霖, 李玉星, 等. 高含CO2的多相流体系节流效应模型[J]. 油气储运, 2018, 37(10):1128-1134.
|
|
ZHANG Datong, TENG Lin, LI Yuxing, et al. Throttling effect model for multiphase flow system with high CO2 content[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1128-1134.
|
[4] |
张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程报, 2021, 15(7):2344-2355.
|
|
ZHANG Yapeng, CUI Longpeng, LIU Yanfang, et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2344-2355.
|
[5] |
李小春, 袁维, 白冰. CO2地质封存力学问题的数值模拟方法综述[J]. 岩土力学, 2016, 37(6):1762-1772.
|
|
LI Xiaochun, YUAN Wei, BAI Bing. A review of numerical simulation methods for geomechanical problems induced by CO2 geological storage[J]. Rock and Soil Mechanics, 2016, 37(6): 1762-1772.
|
[6] |
吴秀章. 中国二氧化碳捕集与地质封存首次规模化探索[M]. 北京: 科学出版社, 2013.
|
|
WU Xiuzhang. Carbon dioxide capture and geological storage the first massive exploration in China[M]. Beijing: Science Press, 2013.
|
[7] |
谷丽冰, 李治平, 侯秀林. 二氧化碳地质埋存研究进展[J]. 地质科技情报, 2008, 27(4):80-84.
|
|
GU Libing, LI Zhiping, HOU Xiulin. Existing state about geological storage of carbon dioxide[J]. Geological Science and Technology Information, 2008, 27(4): 80-84.
|
[8] |
罗二辉, 胡永乐, 李昭. CO2地质埋存技术与应用[J]. 新疆石油天然气, 2013, 9(3):14-21.
|
|
LUO Erhui, HU Yongle, LI Zhao. Storage of CO2 in geologic for mations and its application[J]. Xinjiang Oil & Gas, 2013, 9(3): 14-21.
|
[9] |
田巍. 老油田注CO2开发提高注气能力的方法[J]. 石油与天然气化工, 2020, 49(3):72-77.
|
|
TIAN Wei. A method of improving gas injection capacity by CO2 injection for old oilfield[J]. Chemical Engineering of Oil & Gas, 2020, 49(1): 72-77.
|
[10] |
宋黎光, 赵凤兰, 冯海如, 等. 低渗透油藏渗透率对CO2驱重力超覆的影响规律[J]. 油气地质与采收率, 2020, 27(4):111-116.
|
|
SONG Liguang, ZHAO Fenglan, FENG Hairu, et al. Influence of permeability on gravity segregation during CO2 flooding in low-permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 111-116.
|
[11] |
谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38(S1):181-188.
|
|
XIE Jian, WEI Ning, WU Lizhou, et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics, 2017, 38(S1): 181-188.
|
[12] |
胡叶军, 王媛, 刘阳. 深部咸水层二氧化碳沿断层泄漏的运移规律研究[J]. 科学技术与工程, 2015, 15(4):40-46.
|
|
HU Yejun, WANG Yuan, LIU Yang. Study on migration mechanism of carbon dioxide in deep saline aquifers during leakage along a fault[J]. Science Technology and Engineering, 2015, 15(4): 40-46.
|
[13] |
LU C H, SUN Y W, BUSCHECK T A, et al. Uncertainty quantification of CO2 leakage through a fault with multiphase and non-isothermal effects[J]. Greenhouse Gases Science & Technology, 2012, 2(6): 445-459.
|
[14] |
唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1):72-76.
|
|
TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research of the effect of CO2 injection on porous media and fluid property in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76.
|
[15] |
王志兴, 赵凤兰, 冯海如, 等. 边水断块油藏水平井组CO2协同吞吐注入量优化实验研究[J]. 油气地质与采收率, 2020, 27(1):75-80.
|
|
WANG Zhixing, ZHAO Fenglan, FENG Hairu, et al. Experimental research on injection volumes optimization of CO2 huff and puff in horizontal well group in fault block reservoirs with edge water[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 75-80.
|
[16] |
张志雄, 谢健, 戚继红, 等. 地质封存二氧化碳沿断层泄漏数值模拟研究[J]. 水文地质工程地质, 2018, 45(2):109-116.
|
|
ZHANG Zhixiong, XIE Jian, QI Jihong, et al. Numerical simulation of CO2 leakage along faults from geologic carbon dioxide sequestration[J]. Hydrogeological Engineering Geology, 2018, 45(2): 109-116.
|
[17] |
夏盈莉, 许天福, 杨志杰, 等. 深部储层中CO2沿断层泄漏量的影响因素[J]. 环境科学研究, 2017, 30(10):1533-1541.
|
|
XIA Yingli, XU Tianfu, YANG Zhijie, et al. Factors influencing amount of CO2 leakage through a fault zone in deep storage aquifer[J]. Environmental Science Research, 2017, 30(10): 1533-1541.
|
[18] |
胡叶军, 王媛, 任杰. 咸水层封存CO2沿断层带泄漏的影响因素分析[J]. 中国科技论文, 2016, 11(13):1437-1444.
|
|
HU Yejun, WANG Yuan, REN Jie. Analysis of factors affecting the leakage of CO2 along the fault zone in deep saline aquifers[J]. Chinese Scientific Papers, 2016, 11(13): 1437-1444.
|
[19] |
ZHANG L S, ZHANG S Y, JIANG W Z, et al. A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage[J]. Energy, 2018, 165(B): 1178-1190.
|
[20] |
ANNUNZIATELLIS A, BEAUBIEN S E, BIGI S, et al. Gas migration along fault systems and through the vadose zone in the Latera Caldera (central Italy): Implications for CO2 geological storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 353-372.
doi: 10.1016/j.ijggc.2008.02.003
|
[21] |
KAMPMAN N, BICKLE M J, MASKELL A, et al. Drilling and sampling a natural CO2 reservoir: Implications for fluid flow and CO2-fluid-rock reactions during CO2 migration through the overburden[J]. Chemical Geology, 2014, 369(4): 51-82.
doi: 10.1016/j.chemgeo.2013.11.015
|
[22] |
AOYAGI R, KITAMURA O, ITAOKA K, et al. Study on role of simulation of possible leakage from geological CO2 storage in sub-seabed for environmental impact assessment[J]. Energy Procedia, 2011, 4: 3881-3888.
doi: 10.1016/j.egypro.2011.02.325
|
[23] |
ANGELI M, FALEIDE J I, GABRIELSEN R H. Evaluating seal quality for potential storage sites in the Norwegian North Sea[J]. Energy Procedia, 2013, 37(1): 4853-4862.
doi: 10.1016/j.egypro.2013.06.395
|
[24] |
PRUESS K. Numerical simulation of CO2 leakage from a geologic disposal reservoir including transitions from super-to subcritical conditions and boiling of liquid CO2[J]. Society of Petroleum Engineers Journal, 2003, 9(2): 237-248.
|
[25] |
PRUESS K. Numerical simulations show potential for strong nonisothermal effects during fluid leakage from a geologic disposal reservoir for CO2[J]. Geophysical Monograph Series, 2005, 162: 81-89.
|
[26] |
PRUESS K. Integrated modeling of CO2 storage and leakage scenarios including transitions between super-and subcritical conditions, and phase change between liquid and gaseous CO2[J]. Greenhouse Gas Science and Technology, 2011, 1(3): 237-247.
|
[27] |
SHAFAEI M J, ABEDI J, HASSANZADEH H, et al. Reverse gas-lift technology for CO2 storage into deep saline aquifers[J]. Energy, 2012, 45(1): 840-849.
doi: 10.1016/j.energy.2012.07.007
|
[28] |
ZIEMKIEWICZ P, STAUFFER P H, SULLIVAN-GRAHAM J, et al. Opportunities for increasing CO2 storage in deep, saline formations by active reservoir management and treatment of extracted formation water: Case study at the GreenGen IGCC facility, Tianjin, PR China[J]. International Journal of Greenhouse Gas Control, 2016, 54(2): 538-556.
doi: 10.1016/j.ijggc.2016.07.039
|
[29] |
PRUESS K. The TOUGH codes: A family of simulation tools for multiphase flow and transport processes in permeable media[J]. Vadose Zone Journal, 2004, 3(3): 738-746.
|