方法理论

绿泥石与CO2溶液反应实验研究

  • 邓家胜 ,
  • 王子逸 ,
  • 何旺达 ,
  • 彭东宇 ,
  • 余波 ,
  • 唐洪明
展开
  • 1.中国石油新疆油田公司百口泉采油厂,新疆 克拉玛依 834000
    2.西南石油大学,四川 成都 610500
    3.中海石油(中国)有限公司湛江分公司,广东 湛江 524057
邓家胜(1986—),男,硕士研究生,工程师,主要从事油气田开发领域研究。地址:克拉玛依市宝石路E座办公楼328室,邮政编码:834000。E-mail: bkqdjs@petrochina.com.cn

收稿日期: 2021-11-09

  网络出版日期: 2022-09-27

Experimental study on reaction of chlorite with CO2 aqueous solution

  • Jiasheng DENG ,
  • Ziyi WANG ,
  • Wangda HE ,
  • Dongyu PENG ,
  • Bo YU ,
  • Hongming TANG
Expand
  • 1. Baikouquan Oil Production Plant of CNPC Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China
    2. Southwest Petroleum University, Chengdu, Sichuan 610500, China
    3. Zhanjiang Branch of CNOOC(China), Zhanjiang, Guangdong 524057, China

Received date: 2021-11-09

  Online published: 2022-09-27

摘要

在CO2与岩石反应的过程中,因岩石中含有石英、钾长石、钠长石等各种成分,各矿物间存在协同/耦合效应,一定程度上对反应进程起着促进或抑制的作用。绿泥石是沉积岩重要的黏土矿物,为明确绿泥石在CO2水溶液中的化学行为与变化历程,利用XRD(X射线衍射)、XRF(X射线荧光光谱)、ICP(电感耦合等离子发射光谱)、SEM(扫描电镜)等手段,系统评价了其在10 MPa、60 ℃条件下分别与CO2反应7、30 d时间内的状态,重点对比了绿泥石粉末反应前后固相元素、晶体结构及反应液中离子质量浓度变化,结合绿泥石结构特征,明确绿泥石变化的机理。结果表明,绿泥石与CO2反应后液相中Ca2+、Mg2+、Al3+等质量浓度先上升后下降;Si4+质量浓度先上升后趋于平稳,固相中绿泥石d(002)、d(004)峰所对应晶面在反应后遭到破坏,固相元素中Si/Al质量比由4.82升高至5.39。在酸性条件下,水镁石片中的羟基更易于H+结合,释放出Fe2+、Mg2+、Al3+等阳离子,由于水镁石八面体比硅氧四面体和铝氧八面体更易发生离子交换,水镁石片中Mg、Al、Fe等元素先于硅氧四面体和铝氧八面体中的Si、Al溶出。

本文引用格式

邓家胜 , 王子逸 , 何旺达 , 彭东宇 , 余波 , 唐洪明 . 绿泥石与CO2溶液反应实验研究[J]. 油气藏评价与开发, 2022 , 12(5) : 777 -783 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.009

Abstract

During the reaction between CO2 and rocks, there is a synergistic/coupling effect among minerals because the rocks contain quartz, potassium feldspar, albite and other components, which promotes or inhibits the reaction process to a certain extent. The chlorite is an important clay mineral of sedimentary rocks. In order to clarify the chemical behavior and change process of the chlorite in the CO2 aqueous solution, the state of chlorite reacting with CO2 respectively for 7 and 30 days at 10 MPa and 60 ℃ are systematically evaluated by means of XRD(X-Ray Diffraction), XRF(X-Ray Fluorescence), ICP(Inductively Coupled Plasma), and SEM(Scanning Electron Microscopy), focusing on the comparison of the change of the solid elements, the crystal structure and the ion concentration in the reaction solution before and after chlorite powder reaction. Combined with the structural characteristics of chlorite, the mechanism of chlorite change is clarified. The results show that the concentrations of Ca2+, Mg2+ and Al3+ in the liquid phase firstly increase and then decrease after the reaction of the chlorite with CO2. The concentration of Si4+ firstly increases and then is stabilized. The crystal planes corresponding to chlorite d(002) and d (004) peaks in the solid phase are destroyed after the reaction, and the mass ratio of Si and Al in the solid element increase from 4.82 to 5.39. Under the acidic conditions, hydroxyl groups in brucite flakes are easier to combine with H+ and release cations such as Fe2+, Mg2+, Al3+, etc. Because the brucite octahedron is more prone to ion exchange than silica tetrahedron and alumina octahedron, Mg, Al, Fe and other elements in brucite flakes are dissolved before Si and Al in silica tetrahedron and alumina octahedron.

参考文献

[1] 蔡博峰, 庞凌云, 曹丽斌, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016—2018年)评估[J]. 环境工程, 2019, 37(2):1-7.
[1] CAI Bofeng, PANG Lingyun, CAO Libin, et al. Two-year implementation assessment (2016—2018) of China’s Technical Guideline on Environmental Risk Assessment for Carbon Dioxide Capture, Utilization and Storage (on trial)[J]. Environmental Engineering, 2019, 37(2): 1-7.
[2] LIU B, ZHAO F Y, XU J P, et al. Experimental investigation and numerical simulation of CO2-brine-rock interactions during CO2 sequestration in a deep saline aquifer[J]. Sustainability, 2019, 11(2): 317.
[3] GUSTAFSSON Å B, PUIGDOMENECH I. The effect of pH on chlorite dissolution rates at 25 ℃[C]. [S.l.]:Materials Research Society symposia proceedings, 2002.
[4] BLACK J R, CARROLL S A, HAESE R R. Rates of mineral dissolution under CO2 storage conditions[J]. Chemical Geology, 2015, 399: 134-144.
[5] LOUGEAR A, GRODZICKI M, BERTOLDI C, et al. Mössbauer and molecular orbital study of chlorites[J]. Physics and Chemistry of Minerals, 2000, 27(4): 258-269.
[6] BRANDT F, BOSBACH D, KRAWCZYK-BÄRSCH E, et al. Chlorite dissolution in the acid ph-range: A combined microscopic and macroscopic approach[J]. Geochimica et Cosmochimica Acta, 2003, 67(8): 1451-1461.
[7] HAMER M, GRAHAM R C, AMRHEIN C, et al. Dissolution of ripidolite (Mg, Fe-chlorite) in organic and inorganic acid solutions[J]. Soil Science Society of America Journal, 2003, 67(2): 654-661.
[8] KAMEDA J, SUGIMORI H, MURAKAMI T. Modification to the crystal structure of chlorite during early stages of its dissolution[J]. Physics & Chemistry of Minerals, 2009, 36(9): 537-544.
[9] SMITH M M, WOLERY T J, CARROLL S A. Kinetics of chlorite dissolution at elevated temperatures and CO2 conditions[J]. Chemical Geology, 2013, 347: 1-8.
[10] BLACK J R, HAESE R R. Batch reactor experimental results for GaMin’11: Reactivity of siderite/ankerite, labradorite, illite and chlorite under CO2 saturated conditions[J]. Energy Procedia, 2014, 63: 5443-5449.
[11] LU J M, KHARAKA Y K, THORDSEN J J, et al. CO2-rock-brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, U.S.A[J]. Chemical Geology, 2012, 291(1): 269-277.
[12] DEER W A, HOWIE R A, ZUSSMAN J. An introduction to the rock-forming minerals[M]. Kent: Prentice Hall, 2013.
[13] NAGY K L. Dissolution and precipitation kinetics of sheet silicates[J]. Reviews in Mineralogy and Geochemistry, 1995, 31(1): 173-233..
[14] LOWSON R T, BROWN P L, COMARMOND M-C J, et al. The kinetics of chlorite dissolution[J]. Geochimica Et Cosmochimica Acta, 2007, 71(6): 1431-1447.
[15] 唐洪明. 常规稠油油藏储层损害机理与保护技术研究[D]. 成都: 西南石油学院, 2003.
[15] TANG Hongming. Research on reservoir damage mechanism and protection technology of conventional heavy oil reservoir[D]. Chengdu: Southwest Petroleum Institute, 2003.
[16] 唐洪明, 赵峰, 李皋, 等. 绿泥石与土酸、氟硼酸反应实验研究[J]. 油田化学, 2007, 24(4):307-309.
[16] TANG Hongming, ZHAO Feng, LI Gao, et al. Experiment study on reactions of chlorite with mud and fluoboric acids[J]. Oilfield Chemistry, 2007, 24(4): 307-309.
[17] GILFILLAN S M V, LOLLAR B S, HOLLAND G, et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J]. Nature, 2009, 458: 614-618.
[18] KASZUBA J P, JANECKY D R, SNOW M G. Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200 bars: Implications for geologic sequestration of carbon[J]. Applied Geochemistry, 2003, 18(7): 1065-1080.
[19] WATSON M N, ZWINGMANN N, LEMON N M. The Ladbroke Grove-Katnook Carbon Dioxide Natural Laboratory: A recent CO2 accumulation in a lithic sandstone reservoir[C]// Paper presented at the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, October 2002.
[20] BLACK J R, HAESE R R. Chlorite dissolution rates under CO2 saturated conditions from 50 to 120 °C and 120 to 200 bar CO2[J]. Geochimica et Cosmochimica Acta, 2014, 125: 225-240.
[21] ROSENBAUER R J, KOKSALAN T, PALANDRI J L. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers[J]. Fuel Processing Technology, 2005, 86(14-15): 1581-1597.
[22] KIRSTE D M, WATSON M N, TINGATE P R. Geochemical modelling of CO2-water-rock interaction in the Pretty Hill Formation, Otway Basin, Eastern Australasian basins symposium Ⅱ[C]// Paper presented at the PESA Eastern Australasian Basins Symposium II, [S.l.], 2004.
[23] LUQUOT L, ANDREANI M, GOUZE P, et al. CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation - Otway Basin-Australia)[J]. Chemical Geology, 2012, 294-295: 75-88.
文章导航

/