油气藏评价与开发 >
2023 , Vol. 13 >Issue 1: 100 - 107
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.01.011
矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究
收稿日期: 2021-10-26
网络出版日期: 2023-01-30
基金资助
国家科技重大专项“页岩储层缝网扩展的力学机制及定量表征”(2017ZX05037-001)
Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing
Received date: 2021-10-26
Online published: 2023-01-30
为了探究矿物界面作用对页岩水力压裂裂缝起裂和扩展的影响,建立了页岩微观结构模型,并将零厚度cohesive单元嵌入实体单元内,运用数值模拟方法研究矿物边界界面刚度对水力裂缝扩展的影响,得到矿物界面作用影响下页岩水力压裂裂缝扩展规律。结果表明,页岩水力压裂裂缝破坏形式以拉伸破坏为主,裂缝扩展路径包括两种方式:一是沿着矿物边界扩展,二是穿过矿物边界进入矿物内部扩展。随着矿物边界界面刚度的增大,裂缝起裂压力和孔隙压力逐渐增大,裂缝长度、数目和面积逐渐减小,裂缝宽度逐渐增大,容易形成短而宽的裂缝。页岩储层开展水力压裂作业应该优先选择矿物边界界面刚度较小的位置。研究成果有助于揭示矿物界面作用对页岩水力裂缝扩展的作用机理,为合理选择页岩气储层水力压裂作业层位提供理论依据。
候梦如 , 梁冰 , 孙维吉 , 刘奇 , 赵航 . 矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究[J]. 油气藏评价与开发, 2023 , 13(1) : 100 -107 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.01.011
In order to study the influence of mineral interface action on the initiation and propagation of shale hydraulic fracturing fractures, a shale microstructure model was established. In the model, the zero-thickness cohesive element was embedded in the solid element. A numerical simulation of the effect of mineral boundary interface stiffness on hydraulic fracture propagation was carried out to reveal the law of shale hydraulic fracturing crack propagation under the influence of mineral interface action. The results show that the tensile destruction is the main form of fracture failure of shale hydraulic fracturing. The crack propagation path consists of two ways, one is to extend along the mineral boundary, and the other is to cross the mineral boundary and enter the mineral to expand. With the increase of the mineral boundary interface stiffness, the crack initiation pressure and pore pressure gradually increase, the length, number and area of the cracks gradually decrease, and the width of the cracks gradually increases, so that it is easy to form short and wide cracks. When carrying out shale hydraulic fracturing operations, the location where the stiffness of the mineral boundary interface is lower should be selected first. The research results help to reveal the action mechanism of the mineral interface action on the expansion of the shale hydraulic fracture, and provide a theoretical basis for the reasonable selection of the hydraulic fracturing layer position of the shale gas reservoir.
[1] | 何骁, 吴建发, 雍锐, 等. 四川盆地长宁——威远区块海相页岩气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(2): 259-272. |
[1] | HE Xiao, WU Jianfa, YONG Rui, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in changning-Weiyuan block, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(2): 259-272. |
[2] | 李庆辉, 李少轩, 刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏, 2021, 28(3): 130-138. |
[2] | LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fracturing reformation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 130-138. |
[3] | 张树翠, 孙可明. 储层非均质性和各向异性对水力压裂裂纹扩展的影响[J]. 特种油气藏, 2019, 26(2): 96-100. |
[3] | ZHANG Shucui, SUN Keming. The influence of reservoir heterogeneity and anisotropy on hydraulic fracture propagation[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 96-100. |
[4] | 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3): 48-55. |
[4] | CHENG Wanli, DENG Zhengbin, LIU Zhihong, et al. Research progress in interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 48-55. |
[5] | CHU L, LUO L, FWA T F. Effects of aggregate mineral surface anisotropy on asphalt-aggregate interfacial bonding using molecular dynamics (MD) simulation[J]. Construction and Building Materials, 2019, 225 : 1-12. |
[6] | 梁冰, 岳鹭飞, 孙维吉. 页岩矿物组分对裂缝扩展影响的数值模拟分析[J]. 海相油气地质, 2019, 24(4): 97-101. |
[6] | LIANG Bing, YUE Lufei, SUN Weiji. The influence of shale mineral composition on crack growth:numerical simulation[J]. Marine Origin Petroleum Geology, 2019, 24(4): 97-101. |
[7] | POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. |
[8] | 刘泉声, 甘亮, 吴志军, 等. 基于零厚度黏聚力单元的水力压裂裂隙空间分布影响分析[J]. 煤炭学报, 2018, 43(S2): 393-402. |
[8] | LIU Quansheng, GAN Liang, WU Zhijun, et al. Analysis of spatial distribution of cracks caused by hydraulic fracturing based on zero-thickness cohesive elements[J]. Journal of China Coal Society, 2018, 43(S2): 393-402. |
[9] | WU Z J, SUN H, WONG L N Y. A cohesive element-based numerical manifold method for hydraulic fracturing modelling with Voronoi Grains[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2335-2359. |
[10] | 李勇华. 矿物相互作用对岩石单轴抗压强度的影响研究[J]. 人民长江, 2019, 50(6): 198-202. |
[10] | LI Yonghua. Effect of mineral interaction on uniaxial compressive strength of rock[J]. Yangtze River, 2019, 50(6): 198-202. |
[11] | 薛炳, 张广明, 吴恒安, 等. 油井水力压裂的三维数值模拟[J]. 中国科学技术大学学报, 2008, 44(11): 1322-1325. |
[11] | XUE Bing, ZHANG Guangming, WU Heng’an, et al. Three-dimensional numerical simulation of hydraulic fracture in oil wells[J]. Journal of University of Science and Technology of China, 2008, 44(11): 1322-1325. |
[12] | 连志龙, 张劲, 王秀喜, 等. 水力压裂扩展特性的数值模拟研究[J]. 岩土力学, 2009, 30(1): 169-174. |
[12] | LIAN Zhilong, ZHANG Jing, WANG Xiuxi, et al. Simulation study of characteristics of hydraulic fracturing propagation[J]. Rock and Soil Mechanics, 2009, 30(1): 169-174. |
[13] | 张广明, 刘合, 张劲, 等. 油井水力压裂流-固耦合非线性有限元数值模拟[J]. 石油学报, 2009, 30(1): 113-116. |
[13] | ZHANG Guangming, LIU He, ZHANG Jing, et al. Simulation of hydraulic of oil well based on fluid-solid coupling equation and non-linear finite element[J]. Acta Petrolei Sinica, 2009, 30(1): 113-116. |
[14] | 董平川, 徐小荷. 储层流固耦合的数学模型及其有限元方程[J]. 石油学报, 1998, 19(1): 74-80. |
[14] | DONG Pingchuan, XU Xiaohe. The fully coupled mathematical of the fluid-solid in an oil reservoir and its finite element equations[J]. Acta Petrolei Sinica, 1998, 19(1): 74-80. |
[15] | DEAN R H, SCHMIDT J H. Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator[J]. SPE Journal, 2009, 14(4): 707-714. |
[16] | HAGOORT J, WEATHERILL B D, SETTARI A. Modeling the propagation of waterflood-induced hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1980, 20(4): 293-303. |
[17] | 张晨晨, 王玉满, 董大忠, 等. 川南长宁地区五峰组—龙马溪组页岩脆性特征[J]. 天然气地球科学, 2016, 27(9): 1629-1639. |
[17] | ZHANG Chenchen, WANG Yuman, DONG Dazhong, et al. Brittleness characteristics of Wufeng-Longmaxi shale in Changning region, Southern Sichuan, China[J]. Natural Gas Geoscience, 2016, 27(9): 1629-1639. |
[18] | 李文浩, 卢双舫, 王民, 等. 基于扫描电镜大视域拼接技术定量表征致密储层微观非均质性[J]. 石油与天然气地质, 2022, 43(6): 1497-1504. |
[18] | Li Wenhao, Lu Shuangfang, Wang Min, et al. Quantitative characterization of micro heterogeneity of tight reservoirs by large-view FE-SEM splicing technology[J]. Oil & Gas Geology, 2022, 43(6): 1497-1504. |
[19] | LIU Q, LIANG B, SUN W J, et al. Experimental study on the difference of shale mechanical properties[J]. Advances in Civil Engineering, 2021. |
[20] | RAMSAY J G. Folding and fracturing of rocks[M]. London: Mc-Graw-Hill, 1967. |
[21] | 卞康, 陈彦安, 刘建, 等. 不同吸水时间下页岩卸荷破坏特征的颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367. |
[21] | BIAN Kang, CHEN Yan’an, LIU Jian, et al. Particle discrete element study of shale unloading damage characteristics under different water absorption times[J]. Geotechnics, 2020, 41(S1): 355-367. |
[22] | 隋丽丽, 杨永明, 杨文光, 等. 胜利油田东营凹陷区页岩可压裂性评价[J]. 煤炭学报, 2015, 40(7): 1588-1594. |
[22] | SUI Lili, YANG Yongming, YANG Wenguang, et al. Evaluation of shale fracturing ability in Dongying Sag of Shengli Oilfield[J]. Acta China Coal Society, 2015, 40(7): 1588-1594. |
[23] | OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583. |
[24] | ELIYAHU M, EMMANUEL S, DAY-STIRRAT R J, et al. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59: 294-304. |
/
〈 | 〉 |