[1] |
何骁, 吴建发, 雍锐, 等. 四川盆地长宁——威远区块海相页岩气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(2): 259-272.
doi: 10.7623/syxb202102010
|
|
HE Xiao, WU Jianfa, YONG Rui, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in changning-Weiyuan block, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(2): 259-272.
doi: 10.7623/syxb202102010
|
[2] |
李庆辉, 李少轩, 刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏, 2021, 28(3): 130-138.
|
|
LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fracturing reformation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 130-138.
|
[3] |
张树翠, 孙可明. 储层非均质性和各向异性对水力压裂裂纹扩展的影响[J]. 特种油气藏, 2019, 26(2): 96-100.
|
|
ZHANG Shucui, SUN Keming. The influence of reservoir heterogeneity and anisotropy on hydraulic fracture propagation[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 96-100.
|
[4] |
程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3): 48-55.
|
|
CHENG Wanli, DENG Zhengbin, LIU Zhihong, et al. Research progress in interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 48-55.
|
[5] |
CHU L, LUO L, FWA T F. Effects of aggregate mineral surface anisotropy on asphalt-aggregate interfacial bonding using molecular dynamics (MD) simulation[J]. Construction and Building Materials, 2019, 225 : 1-12.
doi: 10.1016/j.conbuildmat.2019.07.178
|
[6] |
梁冰, 岳鹭飞, 孙维吉. 页岩矿物组分对裂缝扩展影响的数值模拟分析[J]. 海相油气地质, 2019, 24(4): 97-101.
|
|
LIANG Bing, YUE Lufei, SUN Weiji. The influence of shale mineral composition on crack growth:numerical simulation[J]. Marine Origin Petroleum Geology, 2019, 24(4): 97-101.
|
[7] |
POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
|
[8] |
刘泉声, 甘亮, 吴志军, 等. 基于零厚度黏聚力单元的水力压裂裂隙空间分布影响分析[J]. 煤炭学报, 2018, 43(S2): 393-402.
|
|
LIU Quansheng, GAN Liang, WU Zhijun, et al. Analysis of spatial distribution of cracks caused by hydraulic fracturing based on zero-thickness cohesive elements[J]. Journal of China Coal Society, 2018, 43(S2): 393-402.
|
[9] |
WU Z J, SUN H, WONG L N Y. A cohesive element-based numerical manifold method for hydraulic fracturing modelling with Voronoi Grains[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2335-2359.
doi: 10.1007/s00603-018-1717-5
|
[10] |
李勇华. 矿物相互作用对岩石单轴抗压强度的影响研究[J]. 人民长江, 2019, 50(6): 198-202.
|
|
LI Yonghua. Effect of mineral interaction on uniaxial compressive strength of rock[J]. Yangtze River, 2019, 50(6): 198-202.
|
[11] |
薛炳, 张广明, 吴恒安, 等. 油井水力压裂的三维数值模拟[J]. 中国科学技术大学学报, 2008, 44(11): 1322-1325.
|
|
XUE Bing, ZHANG Guangming, WU Heng’an, et al. Three-dimensional numerical simulation of hydraulic fracture in oil wells[J]. Journal of University of Science and Technology of China, 2008, 44(11): 1322-1325.
|
[12] |
连志龙, 张劲, 王秀喜, 等. 水力压裂扩展特性的数值模拟研究[J]. 岩土力学, 2009, 30(1): 169-174.
|
|
LIAN Zhilong, ZHANG Jing, WANG Xiuxi, et al. Simulation study of characteristics of hydraulic fracturing propagation[J]. Rock and Soil Mechanics, 2009, 30(1): 169-174.
|
[13] |
张广明, 刘合, 张劲, 等. 油井水力压裂流-固耦合非线性有限元数值模拟[J]. 石油学报, 2009, 30(1): 113-116.
doi: 10.7623/syxb200901024
|
|
ZHANG Guangming, LIU He, ZHANG Jing, et al. Simulation of hydraulic of oil well based on fluid-solid coupling equation and non-linear finite element[J]. Acta Petrolei Sinica, 2009, 30(1): 113-116.
doi: 10.7623/syxb200901024
|
[14] |
董平川, 徐小荷. 储层流固耦合的数学模型及其有限元方程[J]. 石油学报, 1998, 19(1): 74-80.
|
|
DONG Pingchuan, XU Xiaohe. The fully coupled mathematical of the fluid-solid in an oil reservoir and its finite element equations[J]. Acta Petrolei Sinica, 1998, 19(1): 74-80.
|
[15] |
DEAN R H, SCHMIDT J H. Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator[J]. SPE Journal, 2009, 14(4): 707-714.
doi: 10.2118/116470-PA
|
[16] |
HAGOORT J, WEATHERILL B D, SETTARI A. Modeling the propagation of waterflood-induced hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1980, 20(4): 293-303.
doi: 10.2118/7412-PA
|
[17] |
张晨晨, 王玉满, 董大忠, 等. 川南长宁地区五峰组—龙马溪组页岩脆性特征[J]. 天然气地球科学, 2016, 27(9): 1629-1639.
|
|
ZHANG Chenchen, WANG Yuman, DONG Dazhong, et al. Brittleness characteristics of Wufeng-Longmaxi shale in Changning region, Southern Sichuan, China[J]. Natural Gas Geoscience, 2016, 27(9): 1629-1639.
|
[18] |
李文浩, 卢双舫, 王民, 等. 基于扫描电镜大视域拼接技术定量表征致密储层微观非均质性[J]. 石油与天然气地质, 2022, 43(6): 1497-1504.
|
|
Li Wenhao, Lu Shuangfang, Wang Min, et al. Quantitative characterization of micro heterogeneity of tight reservoirs by large-view FE-SEM splicing technology[J]. Oil & Gas Geology, 2022, 43(6): 1497-1504.
|
[19] |
LIU Q, LIANG B, SUN W J, et al. Experimental study on the difference of shale mechanical properties[J]. Advances in Civil Engineering, 2021.
|
[20] |
RAMSAY J G. Folding and fracturing of rocks[M]. London: Mc-Graw-Hill, 1967.
|
[21] |
卞康, 陈彦安, 刘建, 等. 不同吸水时间下页岩卸荷破坏特征的颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
|
|
BIAN Kang, CHEN Yan’an, LIU Jian, et al. Particle discrete element study of shale unloading damage characteristics under different water absorption times[J]. Geotechnics, 2020, 41(S1): 355-367.
|
[22] |
隋丽丽, 杨永明, 杨文光, 等. 胜利油田东营凹陷区页岩可压裂性评价[J]. 煤炭学报, 2015, 40(7): 1588-1594.
|
|
SUI Lili, YANG Yongming, YANG Wenguang, et al. Evaluation of shale fracturing ability in Dongying Sag of Shengli Oilfield[J]. Acta China Coal Society, 2015, 40(7): 1588-1594.
|
[23] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583.
doi: 10.1557/JMR.1992.1564
|
[24] |
ELIYAHU M, EMMANUEL S, DAY-STIRRAT R J, et al. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59: 294-304.
doi: 10.1016/j.marpetgeo.2014.09.007
|