方法理论

CO2封存中盖层突破压力计算与分析

  • 崔传智 ,
  • 李惊鸿 ,
  • 吴忠维 ,
  • 张团 ,
  • 张传宝
展开
  • 1.中国石油大学(华东)非常规油气开发教育部重点实验室,山东 青岛 266580
    2.中国石化胜利油田分公司勘探开发研究院,山东 东营 257015
崔传智(1970—),男,博士,教授,主要从事油气渗流理论、油气田开发技术方面的工作。地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东)非常规油气开发教育部重点实验室,邮政编码:266580。E-mail: ccz2008@126.com

收稿日期: 2022-10-12

  网络出版日期: 2023-06-26

基金资助

国家自然科学基金“致密油藏多段压裂水平井时空耦合流动模拟及参数优化方法”(51974343);青岛市博士后应用研究项目“致密油藏体积压裂支撑剂分布模拟与参数优化研究”(qdyy20200084)

Calculation and analysis of breakthrough pressure of caprock in CO2 storage

  • Chuanzhi CUI ,
  • Jinghong LI ,
  • Zhongwei WU ,
  • Tuan ZHANG ,
  • Chuanbao ZHANG
Expand
  • 1. Key Laboratory of Unconventional Oil and Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, Shandong 266580, China
    2. Exploration and Development Research Institute, Sinopec Shengli Oilfield, Dongying, Shandong 257015, China

Received date: 2022-10-12

  Online published: 2023-06-26

摘要

盖层是CO2封存中最重要的地质构造组成,其封闭能力的表征方法是目前研究的热点。针对盖层封闭能力评价的问题,在耦合平行毛管束与DLVO(带电表面通过液体介质的微观作用力)理论的基础上,考虑滑移效应和水膜效应,建立了盖层突破压力的理论计算方法,并与实验数据进行准确度验证。通过影响因素分析研究了突破压力随滑移长度、有效毛管半径的变化规律。结果表明:6块岩心样品的突破压力计算结果与实验数据相对误差介于0.317 %~10.800 %;滑移长度越小、有效毛管半径越大,突破压力越小。

本文引用格式

崔传智 , 李惊鸿 , 吴忠维 , 张团 , 张传宝 . CO2封存中盖层突破压力计算与分析[J]. 油气藏评价与开发, 2023 , 13(3) : 322 -329 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.03.007

Abstract

Cap rock is the most important geological structure in CO2 storage, and the characterization method of its sealing capacity is a hot research topic at present. Aiming at the problem of evaluating the sealing ability of caprock, based on the theory of coupling parallel capillary bundle and DLVO(microscopic force of charged surface passing through liquid medium), considering slip effect and water film effect, the theoretical calculation method of caprock breakthrough pressure is established, and the accuracy is verified with experimental data. The variation of breakthrough pressure with slip length and effective capillary radius is studied by analyzing the influencing factors. The results show that the relative error between the calculated breakthrough pressure and the experimental data of six core samples is between 0.317 % and 10.800 %. The smaller the slip length and the larger the effective capillary radius, the smaller the breakthrough pressure.

参考文献

[1] 付晓飞, 吴桐, 吕延防, 等. 油气藏盖层封闭性研究现状及未来发展趋势[J]. 石油与天然气地质, 2018, 39(3): 454-471.
[1] FU Xiaofei, WU Tong, LYU Yanfang, et al. Research status and future development trends of cap sealing of oil and gas reservoirs[J]. Oil & Gas Geology, 2018, 39(3): 454-471.
[2] 谢玉洪. 莺歌海盆地高温高压盖层封盖能力定量评价[J]. 地球科学, 2019, 44(8): 2579-2589.
[2] XIE Yuhong. Quantitative evaluation of capping capacity of high temperature and high pressure cap rocks in Yinggehai Basin[J]. Earth Science, 2019, 44(8): 2579-2589.
[3] 吕延防, 张绍臣, 王亚明. 盖层封闭能力与盖层厚度的定量关系[J]. 石油学报, 2000, 21(2): 27-30.
[3] LYU Yanfang, ZHANG Shaochen, WANG Yaming. Quantitative relationship between cap sealing capacity and cap thickness[J]. Acta Petrolei Sinica, 2000, 21(2): 27-30.
[4] 李明诚, 李伟, 蔡峰, 等. 油气成藏保存条件的综合研究[J]. 石油学报, 1997, 18(2): 44-51.
[4] LI Mingcheng, LI Wei, CAI Feng, et al. A comprehensive study on hydrocarbon accumulation and preservation conditions[J]. Acta Petrolei Sinica, 1997, 18(2): 44-51.
[5] 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1): 72-76.
[5] TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research on the effect of CO2 injection on porous media and fluid properties in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76.
[6] 唐洪明, 张文锦, 彭东宇, 等. 高岭石与CO2溶液反应实验研究[J]. 石油与天然气化工, 2022, 51(5): 104-109.
[6] TANG Hongming, ZHANG Wenjin, PENG Dongyu, et al. Experimental study on reaction of kaolinite with CO2(aq)[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 104-109.
[7] 董沅武, 王睿, 王思瑶, 等. 特低渗砂岩油藏CO2-低界面张力黏弹流体协同驱油机理研究[J]. 石油与天然气化工, 2022, 51(6): 77-83.
[7] DONG Yuanwu, WANG Rui, WANG Siyao, et al. Study on synergistic oil displacement mechanism of CO2-low interfacial tension viscoelastic fluid alternating flooding in ultra-low permeability sandstone reservoir[J]. Chemical Engineering of Oil & Gas, 2022, 51(6): 77-83.
[8] 郭永伟, 闫方平, 王晶, 等. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[8] GUO Yongwei, YAN Fangping, WANG Jing, et al. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs[J]. Lithologic Reservoirs, 2021, 33(3): 153-161.
[9] 童晓光, 牛嘉玉. 区域盖层在油气聚集中的作用[J]. 石油勘探与开发, 1989, 1(4):1-8.
[9] TONG Xiaoguang, NIU Jiayu. Role of regional cap rocks in hydrocarbon accumulation[J]. Petroleum Exploration and Development, 1989, 1(4): 1-8.
[10] 付广, 张发强, 吕延防. 厚度在泥岩盖层封盖油气中的作用[J]. 天然气地球科学, 1998, 9(6): 20-25.
[10] FU Guang, ZHANG Faqiang, LYU Yanfang. The role of thickness in the sealing of mudstone cap[J]. Natural Gas Geoscience, 1998, 9(6): 20-25.
[11] 俞凌杰, 范明, 刘伟新, 等. 盖层封闭机理研究[J]. 石油实验地质, 2011, 33(1): 91-95.
[11] YU Lingjie, FAN Ming, LIU Weixin, et al. Study on sealing mechanism of cap rock[J]. Petroleum Geology & Experiment, 2011, 33(1): 91-95.
[12] 张蕾. 盖层物性封闭力学机制新认识[J]. 天然气地球科学, 2010, 21(1): 112-116.
[12] ZHANG Lei. New understanding of mechanical mechanism of physical sealing of cap rocks[J]. Natural Gas Geoscience, 2010, 21(1): 112-116.
[13] 马存飞, 董春梅, 林承焰, 等. 盖层有效厚度计算方法及应用[J]. 中国石油大学学报(自然科学版), 2018, 42(1): 21-31.
[13] MA Cunfei, DONG Chunmei, LIN Chengyan, et al. Calculation method and application of effective cap thickness[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(1): 21-31.
[14] AMANN-HILDENBRAND A, KROOSS B M, BERTIER P, et al. Laboratory testing procedure for CO2 capillary entry pressures on caprocks[J]. Carbon Dioxide Capture for Storage in Deep Geological Formations, 2015, 4: 383-412.
[15] KAWAURA K, AKAKU K, NAKANO M. The threshold capillary pressure affected by the different properties of injection gases[C]// Paper SPWLA-2014-SS presented at the SPWLA 55th Annual Logging Symposium, Abu Dhabi, United Arab Emirates, May 2014.
[16] KIM S, SANTAMARINA J C. CO2 breakthrough and leak-sealing-Experiments on shale and cement[J]. International Journal of Greenhouse Gas Control, 2013, 19: 471-477.
[17] LI S, DONG M, LI Z, et al. Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long‐term CO2 storage in the Weyburn field[J]. Geofluids, 2005, 5(4): 326-334.
[18] WU T, PAN Z, CONNELL L D, et al. Gas breakthrough pressure of tight rocks: A review of experimental methods and data[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103408.
[19] 郝术仁. 泥岩盖层对CO2圈闭的细观性特征及模型研究[D]. 长春: 吉林大学, 2019.
[19] HAO Shuren. Study on the mesoscopic characteristics and model of CO2 trap by mudstone cap layer[D]. Changchun: Jilin University, 2019.
[20] MA C, LIN C, DONG C, et al. Determination of the critical flow pore diameter of shale caprock[J]. Marine and Petroleum Geology, 2020, 112: 104042.
[21] NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bull, 93: 329-340.
[22] ESPINOZA D N, SANTAMARINA J C. CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage[J]. International Journal of Greenhouse Gas Control, 2017, 66: 218-229.
[23] FIROUZI M, WILCOX J. Slippage and viscosity predictions in carbon micropores and their influence on CO2 and CH4 transport[J]. The Journal of chemical physics, 2013, 138(6): 064705.
[24] 杨宇, 周文, 姜平, 等. 对致密气藏水膜厚度的再认识[J]. 中国海上油气, 2019, 31(1): 94-102.
[24] YANG Yu, ZHOU Wen, JIANG Pin, et al. Recognition of water film thickness in tight gas reservoirs[J]. China Offshore Oil and Gas, 2019, 31(1): 94-102.
[25] KVAMME B, KUZNETSOVA T, HEBACH A, et al. Measurements and modelling of interfacial tension for water+ carbon dioxide systems at elevated pressures[J]. Computational Materials Science, 2007, 38(3): 506-513.
[26] WU J, FAN T L, GOMEZ-RIVAS E, et al. Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 557-579.
[27] HE M X, ZHOU F Y, WU K L, et al. Pore network modeling of thin water film and its influence on relative permeability curves in tight formations[J]. Fuel, 2021, 289: 119828.
[28] 李维国, 同登科. 数值计算方法[M]. 东营: 中国石油大学出版社, 2008.
[28] LI Weiguo, TONG Dengke. Numerical computation method[M]. Dongying: China University of Petroleum Press, 2008.
[29] 李爱芬, 张志英, 崔传智, 等. 油层物理学[M]. 东营: 中国石油大学出版社, 2011.
[29] LI Aifen, ZHANG Zhiying, CUI Chuanzhi, et al. Reservoir physics[M]. Dongying: China University of Petroleum Press, 2011.
[30] WATTS N L. Theoretical aspects of cap-rock and fault seals for single and two-phase hydrocarbon columns[J]. Marine and Petroleum Geology, 1987, 4(4): 274-307.
[31] KIVI I R, MAKHNENKO R Y, VILARRASA V. Two-Phase flow mechanisms controlling CO2 intrusion into shaly caprock[J]. Transport in Porous Media, 2022, 141(3): 771-798.
[32] WU Z W, CUI C Z, YANG Y, et al. A fractal permeability model of Tight oil reservoirs considering the effects of multiple factors[J]. Fractal and Fractional, 2022, 6(3): 153.
[33] LI L, SU Y L, WANG H, et al. A new slip length model for enhanced water flow coupling molecular interaction, pore dimension, wall roughness, and temperature[J]. Advances in Polymer Technology, 2019, 2019.
[34] WU K L, CHEN Z X, LI J, et al. Wettability effect on nanoconfined water flow[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3358-3363.
[35] MA C, CHEN Y, SUN G E, et al. Understanding water slippage through carbon nanotubes[J]. Physical Chemistry Chemical Physics, 2021, 23(27): 14737-14745.
[36] PINGINTHA N, LECLERC M, BEASLEY J, et al. Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: Comparison of six models in the calculation of the relative gas diffusion coefficient[J]. Tellus B: Chemical and Physical Meteorology, 2010, 62(1): 47-58.
[37] JONES H G. Plants and microclimate: A quantitative approach to environmental plant physiology[M]. Cambridge university press, 2013.
[38] LALA A M S. A novel model for reservoir rock tortuosity estimation[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107321.
[39] 李海波, 郭和坤, 李海舰, 等. 致密储层束缚水膜厚度分析[J]. 天然气地球科学, 2015, 26(1): 186-192.
[39] LI Haibo, GUO Hekun, LI Haijian, et al. Analysis of bound water film thickness in tight reservoir[J]. Natural Gas Geoscience, 2015, 26(1): 186-192.
[40] IGLAUER S, AL-YASERI A Z, REZAEE R, et al. CO2 wettability of caprocks: Implications for structural storage capacity and containment security[J]. Geophysical Research Letters, 2015, 42(21): 9279-9284.
[41] STEPHAN K, LUCAS K. Viscosity of dense fluids[M]. New York: Springer Science & Business Media, 2013.
文章导航

/