油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (3): 322-329.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.007
收稿日期:
2022-10-12
出版日期:
2023-06-26
发布日期:
2023-06-26
作者简介:
崔传智(1970—),男,博士,教授,主要从事油气渗流理论、油气田开发技术方面的工作。地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东)非常规油气开发教育部重点实验室,邮政编码:266580。E-mail: 基金资助:
CUI Chuanzhi1(),LI Jinghong1,WU Zhongwei1,ZHANG Tuan1,ZHANG Chuanbao2
Received:
2022-10-12
Online:
2023-06-26
Published:
2023-06-26
摘要:
盖层是CO2封存中最重要的地质构造组成,其封闭能力的表征方法是目前研究的热点。针对盖层封闭能力评价的问题,在耦合平行毛管束与DLVO(带电表面通过液体介质的微观作用力)理论的基础上,考虑滑移效应和水膜效应,建立了盖层突破压力的理论计算方法,并与实验数据进行准确度验证。通过影响因素分析研究了突破压力随滑移长度、有效毛管半径的变化规律。结果表明:6块岩心样品的突破压力计算结果与实验数据相对误差介于0.317 %~10.800 %;滑移长度越小、有效毛管半径越大,突破压力越小。
中图分类号:
崔传智,李惊鸿,吴忠维,张团,张传宝. CO2封存中盖层突破压力计算与分析[J]. 油气藏评价与开发, 2023, 13(3): 322-329.
CUI Chuanzhi,LI Jinghong,WU Zhongwei,ZHANG Tuan,ZHANG Chuanbao. Calculation and analysis of breakthrough pressure of caprock in CO2 storage[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 322-329.
表1
水膜厚度计算中使用的参数[24,27]"
参数 | 符号 | 数值 |
---|---|---|
玻尔兹曼常数/(J/K) | 1.38 × 10-23 | |
电子电荷/C | 1.6 × 10-19 | |
真空介电常数/(F/m) | 8.854 × 10-12 | |
水相对介电常数 | 78.5 | |
固/水界面电位/mV | -80 | |
气/水界面电位/mV | -70 | |
伦敦波长/m | 1 × 10-7 | |
普朗克常数/(J·s) | 6.626 × 10-34 | |
电子吸收频率/s-1 | 3 × 1015 | |
折射率 | 1.45,1.13,1.32 | |
Hamaker常数/J | 5.86 × 10-20 5.88 × 10-21 3.20 × 10-20 | |
三相体系Hamaker常数/J | -6.46 × 10-21 | |
特征长度/m | 5 × 10-11 |
表2
水膜厚度实验结果[39]"
样品编号 | 渗透率/10-3 μm2 | 孔隙度/% | 束缚水饱和度/% | 平均毛管半径/nm | 水膜厚度/nm |
---|---|---|---|---|---|
1 | 0.008 | 3.62 | 40.72 | 42.31 | 15.60 |
2 | 0.470 | 6.17 | 48.96 | 246.86 | 35.72 |
3 | 0.022 | 8.61 | 44.41 | 45.21 | 14.26 |
4 | 0.038 | 11.24 | 45.34 | 52.01 | 16.59 |
5 | 0.026 | 5.33 | 39.27 | 62.47 | 20.76 |
6 | 0.300 | 8.49 | 44.19 | 168.13 | 33.41 |
7 | 0.045 | 10.21 | 35.80 | 59.38 | 21.62 |
8 | 0.073 | 10.73 | 33.90 | 73.77 | 22.96 |
表3
CO2突破压力实验数据"
编号 | 岩性 | 渗透率/μm2 | 孔隙度/% | 突破压力/MPa | 实验者 |
---|---|---|---|---|---|
1 | 砂岩 | 5.5 × 10-6 | 5.5 | 3.20 | AMANN-HILDENBRAND 等[ |
2 | 泥岩 | 1.8 × 10-3 | 30.4 | 0.63 | KAWAURA等[ |
3 | 页岩 | 1.0 × 10-5 | 8.0 | 1.25 | KIM等[ |
4 | 砂岩 | 1.2 × 10-5 | 5.5 | 1.50 | AMANN-HILDENBRAND 等[ |
5 | 蒸发岩 | 2.6 × 10-8 | 0.3 | 5.00 | LI等[ |
6 | 泥灰岩 | 2.8 × 10-6 | 5.9 | 4.90 | AMANN-HILDENBRAND 等[ |
表4
CO2突破压力数据计算结果"
编号 | 润湿角/ (°) | 实验压力/ MPa | 实验温度/ K | 黏度/ (mPa·s) | 界面张力/ (mN/m) | 实验突破压力/ MPa | 计算突破压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|---|---|
1 | 44 | 8.0 | 323 | 0.02 | 32.54 | 3.20 | 3.492 | 9.130 |
2 | 49 | 10.0 | 313 | 0.04 | 28.61 | 0.63 | 0.632 | 0.317 |
3 | 49 | 5.5 | 298 | 0.01 | 40.27 | 1.25 | 1.115 | 10.800 |
4 | 44 | 8.0 | 323 | 0.02 | 32.54 | 1.50 | 1.565 | 4.330 |
5 | 27 | 12.0 | 332 | 0.10 | 26.27 | 5.00 | 4.936 | 1.280 |
6 | 50 | 8.0 | 323 | 0.02 | 32.54 | 4.90 | 5.067 | 1.340 |
[1] | 付晓飞, 吴桐, 吕延防, 等. 油气藏盖层封闭性研究现状及未来发展趋势[J]. 石油与天然气地质, 2018, 39(3): 454-471. |
FU Xiaofei, WU Tong, LYU Yanfang, et al. Research status and future development trends of cap sealing of oil and gas reservoirs[J]. Oil & Gas Geology, 2018, 39(3): 454-471. | |
[2] | 谢玉洪. 莺歌海盆地高温高压盖层封盖能力定量评价[J]. 地球科学, 2019, 44(8): 2579-2589. |
XIE Yuhong. Quantitative evaluation of capping capacity of high temperature and high pressure cap rocks in Yinggehai Basin[J]. Earth Science, 2019, 44(8): 2579-2589. | |
[3] |
吕延防, 张绍臣, 王亚明. 盖层封闭能力与盖层厚度的定量关系[J]. 石油学报, 2000, 21(2): 27-30.
doi: 10.7623/syxb200002005 |
LYU Yanfang, ZHANG Shaochen, WANG Yaming. Quantitative relationship between cap sealing capacity and cap thickness[J]. Acta Petrolei Sinica, 2000, 21(2): 27-30.
doi: 10.7623/syxb200002005 |
|
[4] | 李明诚, 李伟, 蔡峰, 等. 油气成藏保存条件的综合研究[J]. 石油学报, 1997, 18(2): 44-51. |
LI Mingcheng, LI Wei, CAI Feng, et al. A comprehensive study on hydrocarbon accumulation and preservation conditions[J]. Acta Petrolei Sinica, 1997, 18(2): 44-51. | |
[5] | 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1): 72-76. |
TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research on the effect of CO2 injection on porous media and fluid properties in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76. | |
[6] | 唐洪明, 张文锦, 彭东宇, 等. 高岭石与CO2溶液反应实验研究[J]. 石油与天然气化工, 2022, 51(5): 104-109. |
TANG Hongming, ZHANG Wenjin, PENG Dongyu, et al. Experimental study on reaction of kaolinite with CO2(aq)[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 104-109. | |
[7] | 董沅武, 王睿, 王思瑶, 等. 特低渗砂岩油藏CO2-低界面张力黏弹流体协同驱油机理研究[J]. 石油与天然气化工, 2022, 51(6): 77-83. |
DONG Yuanwu, WANG Rui, WANG Siyao, et al. Study on synergistic oil displacement mechanism of CO2-low interfacial tension viscoelastic fluid alternating flooding in ultra-low permeability sandstone reservoir[J]. Chemical Engineering of Oil & Gas, 2022, 51(6): 77-83. | |
[8] | 郭永伟, 闫方平, 王晶, 等. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161. |
GUO Yongwei, YAN Fangping, WANG Jing, et al. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs[J]. Lithologic Reservoirs, 2021, 33(3): 153-161. | |
[9] | 童晓光, 牛嘉玉. 区域盖层在油气聚集中的作用[J]. 石油勘探与开发, 1989, 1(4):1-8. |
TONG Xiaoguang, NIU Jiayu. Role of regional cap rocks in hydrocarbon accumulation[J]. Petroleum Exploration and Development, 1989, 1(4): 1-8. | |
[10] | 付广, 张发强, 吕延防. 厚度在泥岩盖层封盖油气中的作用[J]. 天然气地球科学, 1998, 9(6): 20-25. |
FU Guang, ZHANG Faqiang, LYU Yanfang. The role of thickness in the sealing of mudstone cap[J]. Natural Gas Geoscience, 1998, 9(6): 20-25. | |
[11] | 俞凌杰, 范明, 刘伟新, 等. 盖层封闭机理研究[J]. 石油实验地质, 2011, 33(1): 91-95. |
YU Lingjie, FAN Ming, LIU Weixin, et al. Study on sealing mechanism of cap rock[J]. Petroleum Geology & Experiment, 2011, 33(1): 91-95. | |
[12] | 张蕾. 盖层物性封闭力学机制新认识[J]. 天然气地球科学, 2010, 21(1): 112-116. |
ZHANG Lei. New understanding of mechanical mechanism of physical sealing of cap rocks[J]. Natural Gas Geoscience, 2010, 21(1): 112-116. | |
[13] | 马存飞, 董春梅, 林承焰, 等. 盖层有效厚度计算方法及应用[J]. 中国石油大学学报(自然科学版), 2018, 42(1): 21-31. |
MA Cunfei, DONG Chunmei, LIN Chengyan, et al. Calculation method and application of effective cap thickness[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(1): 21-31. | |
[14] | AMANN-HILDENBRAND A, KROOSS B M, BERTIER P, et al. Laboratory testing procedure for CO2 capillary entry pressures on caprocks[J]. Carbon Dioxide Capture for Storage in Deep Geological Formations, 2015, 4: 383-412. |
[15] | KAWAURA K, AKAKU K, NAKANO M. The threshold capillary pressure affected by the different properties of injection gases[C]// Paper SPWLA-2014-SS presented at the SPWLA 55th Annual Logging Symposium, Abu Dhabi, United Arab Emirates, May 2014. |
[16] |
KIM S, SANTAMARINA J C. CO2 breakthrough and leak-sealing-Experiments on shale and cement[J]. International Journal of Greenhouse Gas Control, 2013, 19: 471-477.
doi: 10.1016/j.ijggc.2013.10.011 |
[17] |
LI S, DONG M, LI Z, et al. Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long‐term CO2 storage in the Weyburn field[J]. Geofluids, 2005, 5(4): 326-334.
doi: 10.1111/j.1468-8123.2005.00125.x |
[18] |
WU T, PAN Z, CONNELL L D, et al. Gas breakthrough pressure of tight rocks: A review of experimental methods and data[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103408.
doi: 10.1016/j.jngse.2020.103408 |
[19] | 郝术仁. 泥岩盖层对CO2圈闭的细观性特征及模型研究[D]. 长春: 吉林大学, 2019. |
HAO Shuren. Study on the mesoscopic characteristics and model of CO2 trap by mudstone cap layer[D]. Changchun: Jilin University, 2019. | |
[20] |
MA C, LIN C, DONG C, et al. Determination of the critical flow pore diameter of shale caprock[J]. Marine and Petroleum Geology, 2020, 112: 104042.
doi: 10.1016/j.marpetgeo.2019.104042 |
[21] |
NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bull, 93: 329-340.
doi: 10.1306/10240808059 |
[22] |
ESPINOZA D N, SANTAMARINA J C. CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage[J]. International Journal of Greenhouse Gas Control, 2017, 66: 218-229.
doi: 10.1016/j.ijggc.2017.09.019 |
[23] |
FIROUZI M, WILCOX J. Slippage and viscosity predictions in carbon micropores and their influence on CO2 and CH4 transport[J]. The Journal of chemical physics, 2013, 138(6): 064705.
doi: 10.1063/1.4790658 |
[24] | 杨宇, 周文, 姜平, 等. 对致密气藏水膜厚度的再认识[J]. 中国海上油气, 2019, 31(1): 94-102. |
YANG Yu, ZHOU Wen, JIANG Pin, et al. Recognition of water film thickness in tight gas reservoirs[J]. China Offshore Oil and Gas, 2019, 31(1): 94-102. | |
[25] |
KVAMME B, KUZNETSOVA T, HEBACH A, et al. Measurements and modelling of interfacial tension for water+ carbon dioxide systems at elevated pressures[J]. Computational Materials Science, 2007, 38(3): 506-513.
doi: 10.1016/j.commatsci.2006.01.020 |
[26] |
WU J, FAN T L, GOMEZ-RIVAS E, et al. Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 557-579.
doi: 10.1016/j.marpetgeo.2019.01.014 |
[27] |
HE M X, ZHOU F Y, WU K L, et al. Pore network modeling of thin water film and its influence on relative permeability curves in tight formations[J]. Fuel, 2021, 289: 119828.
doi: 10.1016/j.fuel.2020.119828 |
[28] | 李维国, 同登科. 数值计算方法[M]. 东营: 中国石油大学出版社, 2008. |
LI Weiguo, TONG Dengke. Numerical computation method[M]. Dongying: China University of Petroleum Press, 2008. | |
[29] | 李爱芬, 张志英, 崔传智, 等. 油层物理学[M]. 东营: 中国石油大学出版社, 2011. |
LI Aifen, ZHANG Zhiying, CUI Chuanzhi, et al. Reservoir physics[M]. Dongying: China University of Petroleum Press, 2011. | |
[30] |
WATTS N L. Theoretical aspects of cap-rock and fault seals for single and two-phase hydrocarbon columns[J]. Marine and Petroleum Geology, 1987, 4(4): 274-307.
doi: 10.1016/0264-8172(87)90008-0 |
[31] |
KIVI I R, MAKHNENKO R Y, VILARRASA V. Two-Phase flow mechanisms controlling CO2 intrusion into shaly caprock[J]. Transport in Porous Media, 2022, 141(3): 771-798.
doi: 10.1007/s11242-022-01748-w |
[32] |
WU Z W, CUI C Z, YANG Y, et al. A fractal permeability model of Tight oil reservoirs considering the effects of multiple factors[J]. Fractal and Fractional, 2022, 6(3): 153.
doi: 10.3390/fractalfract6030153 |
[33] | LI L, SU Y L, WANG H, et al. A new slip length model for enhanced water flow coupling molecular interaction, pore dimension, wall roughness, and temperature[J]. Advances in Polymer Technology, 2019, 2019. |
[34] |
WU K L, CHEN Z X, LI J, et al. Wettability effect on nanoconfined water flow[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3358-3363.
doi: 10.1073/pnas.1612608114 |
[35] |
MA C, CHEN Y, SUN G E, et al. Understanding water slippage through carbon nanotubes[J]. Physical Chemistry Chemical Physics, 2021, 23(27): 14737-14745.
doi: 10.1039/D1CP01148K |
[36] |
PINGINTHA N, LECLERC M, BEASLEY J, et al. Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: Comparison of six models in the calculation of the relative gas diffusion coefficient[J]. Tellus B: Chemical and Physical Meteorology, 2010, 62(1): 47-58.
doi: 10.1111/j.1600-0889.2009.00445.x |
[37] | JONES H G. Plants and microclimate: A quantitative approach to environmental plant physiology[M]. Cambridge university press, 2013. |
[38] |
LALA A M S. A novel model for reservoir rock tortuosity estimation[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107321.
doi: 10.1016/j.petrol.2020.107321 |
[39] | 李海波, 郭和坤, 李海舰, 等. 致密储层束缚水膜厚度分析[J]. 天然气地球科学, 2015, 26(1): 186-192. |
LI Haibo, GUO Hekun, LI Haijian, et al. Analysis of bound water film thickness in tight reservoir[J]. Natural Gas Geoscience, 2015, 26(1): 186-192. | |
[40] |
IGLAUER S, AL-YASERI A Z, REZAEE R, et al. CO2 wettability of caprocks: Implications for structural storage capacity and containment security[J]. Geophysical Research Letters, 2015, 42(21): 9279-9284.
doi: 10.1002/2015GL065787 |
[41] | STEPHAN K, LUCAS K. Viscosity of dense fluids[M]. New York: Springer Science & Business Media, 2013. |
[1] | 郭智栋, 康毅力, 王玉斌, 古霖蛟, 游利军, 陈明君, 颜茂凌. 低压高含水致密气藏气-水相渗特征及生产动态响应 [J]. 油气藏评价与开发, 2024, 14(1): 138-150. |
[2] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[3] | 陈秀林, 王秀宇, 许昌民, 张聪. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 296-304. |
[4] | 周海燕,张运来,梁潇,张吉磊,许亚南,刘继柱. 考虑多因素的多层合采产液量劈分模式研究 [J]. 油气藏评价与开发, 2022, 12(6): 945-950. |
[5] | 杨建,詹国卫,赵勇,任春昱,屈重玖. 川南深层页岩气超临界吸附解吸附特征研究 [J]. 油气藏评价与开发, 2021, 11(2): 184-189. |
[6] | 张善义,兰金玉. 基于突变级数法的压裂层段组合方法研究 [J]. 油气藏评价与开发, 2020, 10(5): 108-113. |
[7] | 姬安召,王玉风. 封闭断层复合油藏压裂井压力动态特征 [J]. 油气藏评价与开发, 2019, 9(6): 35-41. |
[8] | 康毅力,白佳佳,李相臣,陈明君,游利军,李鑫磊,李清,房大志. 水—岩作用对富有机质页岩应力敏感性的影响——以渝东南地区龙马溪组页岩为例 [J]. 油气藏评价与开发, 2019, 9(5): 54-62. |
[9] | 李勇明,吴磊,陈希. 基于反常扩散模型的页岩气藏压裂水平井产能研究 [J]. 油气藏评价与开发, 2019, 9(1): 72-79. |
[10] | 于倩男,刘义坤,姚迪,刘学,于洋. 精控压裂薄差储层渗流特征实验研究 [J]. 油气藏评价与开发, 2019, 9(1): 15-22. |
[11] | 李琳琳. 压裂水平井水电模拟实验边界修正方法 [J]. 油气藏评价与开发, 2019, 9(1): 61-64. |
|