综合研究

考虑储层物性变化的SAGD开发蒸汽腔前缘传热研究

  • 陈翔宇 ,
  • 李建元 ,
  • 陈宇
展开
  • 1.中海油田服务股份有限公司油田化学研究院,河北 廊坊 065201
    2.中国石油青海油田采油四厂,青海 茫崖 816401
    3.中海油研究总院有限责任公司,北京 100028
陈翔宇(1977—),女,硕士,工程师,主要从事油田增产方面的研究工作。地址:天津市滨海新区海洋高新技术开发区海川路1581号,邮政编码:300459。E-mail:chenxy15@cosl.com.cn

收稿日期: 2021-11-15

  网络出版日期: 2023-06-26

Heat transfer of steam cavity edge in SAGD process considering reservoir physical property changes

  • Xiangyu CHEN ,
  • Jianyuan LI ,
  • Yu CHEN
Expand
  • 1. Oilfield Chemistry Research Institute, China Oilfield Services Limited, Langfang, Hebei 065201, China
    2. No.4 Oil Production Plant of Qinghai Oilfield Company, CNPC, Mangya, Qinghai 816401, China
    3. CNOOC Research Institute Co., Ltd., Beijing 100028, China

Received date: 2021-11-15

  Online published: 2023-06-26

摘要

目前,SAGD(蒸汽辅助重力泄油技术)开发蒸汽腔边缘的热传递研究主要考虑蒸汽与储层的热传导作用,对流传热及受温度影响的储层物性变化则很少被关注,然而,实际生产中两者对传热效果和温度场分布的影响不容忽略。通过质量守恒、能量守恒和数学坐标变换,综合考虑热传导与热对流的传热机理及储层物性随温度变化对传热的影响,创新性地建立了蒸汽腔前缘传热半解析模型,差分求解得到蒸汽腔边缘温度分布和受温度影响下的储层物性分布。结果表明:①研究模型更符合实际,相比Butler模型和Dong模型,精度分别提高了34 %和11 %;②分析储层物性变化情况下对流和传导的相对关系,得出在原油可动区域中对流传热比例是传导传热的3倍以上,热对流起主导作用,但在远离蒸汽腔位置处仍主要以热传导为主;③通过促进水的流动可以扩大对流传热区域,能够有效提高传热效率,对于减少蒸汽需求和提高原油采收率具有重要的指导意义。

本文引用格式

陈翔宇 , 李建元 , 陈宇 . 考虑储层物性变化的SAGD开发蒸汽腔前缘传热研究[J]. 油气藏评价与开发, 2023 , 13(3) : 379 -384 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.03.013

Abstract

At present, the researches on the heat transfer of the steam cavity edge in the SAGD production process mainly pay attention to the heat conduction between steam and the reservoir, while little attention has been paid to the convective heat transfer and changes of the reservoir physical properties affected by the temperature. However, the influence of both on the heat transfer effect and temperature field distribution cannot be ignored. By the comprehensive consideration of two heat transfer mechanisms of heat conduction and heat convection, as well as the influence of reservoir physical properties changes on heat transfer, a semi-analytical model is established through the conservation of mass, energy and mathematical coordinate transformation, and the temperature distribution at the edge of the steam chamber and the physical property distribution of the reservoir under the influence of temperature are obtained by differential solution. The results show that: ① the model proposed in this paper is more practical, with an accuracy improvement of 34 % and 11 % compared to the Butler's model and the Dong's models, respectively. ② By analyzing the relative relationship between convection and conduction under the change of reservoir physical properties, it is concluded that the proportion of the conduction heat transfer in the crude oil movable area is more than three times higher than that of the conduction heat transfer, the convection heat transfer accounts for the main proportion in the movable area of crude oil, but at the locations far away from the steam cavity, the conduction and convection work together, and it also gives relevant measures to improve heating efficiency.

参考文献

[1] NASR T N, BEAULIEU G, GOLBECK H, et al. Novel expanding solvent-SAGD process “ES-SAGD”[J]. Journal of Canadian Petroleum Technology, 2003, 42(1): 13-16.
[2] JIA X, QU T, CHEN H, et al. Transient convective heat transfer in a steam-assisted gravity drainage(SAGD) process[J]. Fuel, 2019, 247: 315-323.
[3] YU K Z, ZHAO G. Modeling of heat transfer coupled with fluid flow for temperature transient analysis during SAGD process[C]// Paper SPE-181208-MS presented at the SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conference, Lima, Peru, October 2016.
[4] JI D, ZHONG H, DONG M, et al. A model to estimate heat efficiency in SAGD by condensate and initial water flow in oil sands[J]. Industrial & Engineering Chemistry Research, 2016, 55(51): 13147-13156.
[5] CHENG L S, HAO G, HUANG S J. A comprehensive mathematical model for estimating oil drainage rate in SAGD process considering wellbore/formation coupling effect[J]. Heat Mass Transfer, 2017, 53: 1777-1795.
[6] ZHANG Z X, LIU H Q, DONG X H, et al. A new mathematical model to understand the convective heat transfer mechanism in steam-assisted gravity drainage process[J]. Journal of Thermal Science and Engineering Applications, 2017, 10(1): 1287.
[7] MASSOUDI M. Mathematical modeling of fluid flow and heat transfer in petroleum industries and geothermal applications 2020[J]. Energies, 2021, 14(16): 1-4.
[8] BUTLER R M. Thermal recovery of oil and bitumen[M]. Englewood Cliffs: Prentice Hall, 1991.
[9] BUTLER R M. Steam-assisted gravity drainage: concept, development, performance and future[J]. Journal of Canadian Petroleum Technology, 1994, 33(2): 44-50.
[10] 何亮亮. 超稠油SAGD蒸汽腔扩展研究[D]. 成都: 西南石油大学, 2018.
[10] HE Liangliang. Research on steam chamber expansion of SAGD in ultra-heavy oil reservoir[D]. Chengdu: Southwest Petroleum University, 2018.
[11] PINTO H, WANG X, GATES I D, et al. Insights on heat transfer at the top of steam chambers in SAGD[J]. Journal of Heat Transfer: Transactions of the ASME, 2017, 139(4).
[12] 余洋, 刘尚奇, 刘洋. 蒸汽辅助重力泄油开发过程及机理研究综述[J]. 科学技术与工程, 2021, 21(12): 4744-4751.
[12] YU Yang, LIU Shangqi, LIU Yang. Review of research on recovery process and mechanism of steam-assisted gravity drainage[J]. Science Technology and Engineering, 2021, 21(12): 4744-4751.
[13] ZHANG Z X, LIU H Q, DONG X H, et al. Unified model of heat transfer in the multiphase flow in steam assisted gravity drainage process[J]. Journal of Petroleum Science & Engineering, 2017, 157: 875-883.
[14] EDMUNDS N, GITTINS S. Effective application of steam assisted gravity drainage of bitumen to Long horizontal well pairs[J]. Journal of Canadian Petroleum Technology, 1993, 32(6): 49-55.
[15] 刘牧心. 超稠油SAGD开发蒸汽腔前缘温度分布研究[J]. 科学技术与工程, 2015, 15(3): 71-74.
[15] LIU Muxin. Temperature distribution ahead of the steam chamber in SAGD[J]. Science Technology and Engineering, 2015, 15(3): 71-74.
[16] 陈雄, 贾永禄, 桑林翔, 等. 一种确定蒸汽重力采油(SAGD)蒸汽腔前缘发育速度及范围的新方法[J]. 油气藏评价与开发, 2016, 6(1): 36-39.
[16] CHEN Xiong, JIA Yonglu, SANG Linxiang, et al. A new method of calculating velocity and scope of steam chamber for SAGD[J]. Reservoir Evaluation and Development, 2016, 6(1): 36-39.
[17] 范杰, 李相方. 蒸汽辅助重力泄油蒸汽腔前缘传热模型研究[J]. 科学技术与工程, 2016, 16(3): 42-47.
[17] FAN Jie, LI Xiangfang. The research of heat transfer on the front of steam chamber for steam assisted gravity drainage[J]. Science Technology and Engineering, 2016, 16(3): 42-47.
[18] 谷宇峰, 张道勇, 鲍志东. 利用混合模型CRBM-PSO-XGBoost识别致密砂岩储层岩性[J]. 石油与天然气地质, 2021, 42(5): 1210-1222.
[18] GU Yufeng, ZHANG Daoyong, BAO Zhidong. Lithology identification in tight sandstone reservoirs using CRBM-PSO-XGBoost[J]. Oil & Gas Geology, 2021, 42(5): 1210-1222.
[19] SHARMA J, GATES I D. Convection at the edge of a steam-assisted-gravity-drainage steam chamber[J]. SPE Journal, 2011, 16(3): 503-512.
[20] IRANI M, GATES I D. Understanding the convection heat-transfer mechanism in steam-assisted-gravity-drainage process[J]. SPE Journal, 2013, 18(6): 1202-1215.
[21] STEPHEN R D. Aquathermal pressuring and geopressure evaluation[J]. AAPG Bulletin, 1982, 66(7): 931-939.
[22] BOWERS G L. Pore pressure estimation from velocity data: Accounting from overpressure mechanisms besides undercompaction[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 276.
[23] BERRYMAN J G. Thermal conductivity of porous media[J]. Applied Physics Letters, 2005, 86(3): 143.
[24] TRAN D, LONG N, BUCHANAN L, et al. Odelling thermal geomechanical effects on simulation porosity[C]// Paper ARMA-08-087 presented at the 42nd U.S. Rock Mechanics Symposium, San Francisco, California, USA, June 2008.
[25] SOMERTON W H, KEESE J A, CHU S L. Thermal behavior of unconsolidated oil sands[J]. Society of Petroleum Engineers Journal, 1973, 14(5): 513-521.
[26] AHERNE A L, MAINI B. Fluid movement in the SAGD process: A review of the Dover project[J]. Journal of Canadian Petroleum Technology, 2008, 47(1): 31-37.
[27] BIRRELL G. Heat transfer ahead of a SAGD steam chamber, a study of thermocouple data from phase B of the underground test facility (Dover project)[J]. Journal of Canadian Petroleum Technology, 2001, 42(3): 40-47.
[28] JI D Q, ZHONG H, DONG M Z, et al. Study of heat transfer by thermal expansion of connate water ahead of a steam chamber edge in the steam-assisted-gravity-drainage process[J]. Fuel, 2015, 150: 592-601.
文章导航

/