[1] |
NASR T N, BEAULIEU G, GOLBECK H, et al. Novel expanding solvent-SAGD process “ES-SAGD”[J]. Journal of Canadian Petroleum Technology, 2003, 42(1): 13-16.
|
[2] |
JIA X, QU T, CHEN H, et al. Transient convective heat transfer in a steam-assisted gravity drainage(SAGD) process[J]. Fuel, 2019, 247: 315-323.
doi: 10.1016/j.fuel.2019.03.022
|
[3] |
YU K Z, ZHAO G. Modeling of heat transfer coupled with fluid flow for temperature transient analysis during SAGD process[C]// Paper SPE-181208-MS presented at the SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conference, Lima, Peru, October 2016.
|
[4] |
JI D, ZHONG H, DONG M, et al. A model to estimate heat efficiency in SAGD by condensate and initial water flow in oil sands[J]. Industrial & Engineering Chemistry Research, 2016, 55(51): 13147-13156.
doi: 10.1021/acs.iecr.6b03550
|
[5] |
CHENG L S, HAO G, HUANG S J. A comprehensive mathematical model for estimating oil drainage rate in SAGD process considering wellbore/formation coupling effect[J]. Heat Mass Transfer, 2017, 53: 1777-1795.
doi: 10.1007/s00231-016-1935-x
|
[6] |
ZHANG Z X, LIU H Q, DONG X H, et al. A new mathematical model to understand the convective heat transfer mechanism in steam-assisted gravity drainage process[J]. Journal of Thermal Science and Engineering Applications, 2017, 10(1): 1287.
|
[7] |
MASSOUDI M. Mathematical modeling of fluid flow and heat transfer in petroleum industries and geothermal applications 2020[J]. Energies, 2021, 14(16): 1-4.
doi: 10.3390/en14010001
|
[8] |
BUTLER R M. Thermal recovery of oil and bitumen[M]. Englewood Cliffs: Prentice Hall, 1991.
|
[9] |
BUTLER R M. Steam-assisted gravity drainage: concept, development, performance and future[J]. Journal of Canadian Petroleum Technology, 1994, 33(2): 44-50.
doi: 10.2118/94-02-05
|
[10] |
何亮亮. 超稠油SAGD蒸汽腔扩展研究[D]. 成都: 西南石油大学, 2018.
|
|
HE Liangliang. Research on steam chamber expansion of SAGD in ultra-heavy oil reservoir[D]. Chengdu: Southwest Petroleum University, 2018.
|
[11] |
PINTO H, WANG X, GATES I D, et al. Insights on heat transfer at the top of steam chambers in SAGD[J]. Journal of Heat Transfer: Transactions of the ASME, 2017, 139(4).
|
[12] |
余洋, 刘尚奇, 刘洋. 蒸汽辅助重力泄油开发过程及机理研究综述[J]. 科学技术与工程, 2021, 21(12): 4744-4751.
|
|
YU Yang, LIU Shangqi, LIU Yang. Review of research on recovery process and mechanism of steam-assisted gravity drainage[J]. Science Technology and Engineering, 2021, 21(12): 4744-4751.
|
[13] |
ZHANG Z X, LIU H Q, DONG X H, et al. Unified model of heat transfer in the multiphase flow in steam assisted gravity drainage process[J]. Journal of Petroleum Science & Engineering, 2017, 157: 875-883.
|
[14] |
EDMUNDS N, GITTINS S. Effective application of steam assisted gravity drainage of bitumen to Long horizontal well pairs[J]. Journal of Canadian Petroleum Technology, 1993, 32(6): 49-55.
|
[15] |
刘牧心. 超稠油SAGD开发蒸汽腔前缘温度分布研究[J]. 科学技术与工程, 2015, 15(3): 71-74.
|
|
LIU Muxin. Temperature distribution ahead of the steam chamber in SAGD[J]. Science Technology and Engineering, 2015, 15(3): 71-74.
|
[16] |
陈雄, 贾永禄, 桑林翔, 等. 一种确定蒸汽重力采油(SAGD)蒸汽腔前缘发育速度及范围的新方法[J]. 油气藏评价与开发, 2016, 6(1): 36-39.
|
|
CHEN Xiong, JIA Yonglu, SANG Linxiang, et al. A new method of calculating velocity and scope of steam chamber for SAGD[J]. Reservoir Evaluation and Development, 2016, 6(1): 36-39.
|
[17] |
范杰, 李相方. 蒸汽辅助重力泄油蒸汽腔前缘传热模型研究[J]. 科学技术与工程, 2016, 16(3): 42-47.
|
|
FAN Jie, LI Xiangfang. The research of heat transfer on the front of steam chamber for steam assisted gravity drainage[J]. Science Technology and Engineering, 2016, 16(3): 42-47.
|
[18] |
谷宇峰, 张道勇, 鲍志东. 利用混合模型CRBM-PSO-XGBoost识别致密砂岩储层岩性[J]. 石油与天然气地质, 2021, 42(5): 1210-1222.
|
|
GU Yufeng, ZHANG Daoyong, BAO Zhidong. Lithology identification in tight sandstone reservoirs using CRBM-PSO-XGBoost[J]. Oil & Gas Geology, 2021, 42(5): 1210-1222.
|
[19] |
SHARMA J, GATES I D. Convection at the edge of a steam-assisted-gravity-drainage steam chamber[J]. SPE Journal, 2011, 16(3): 503-512.
doi: 10.2118/142432-PA
|
[20] |
IRANI M, GATES I D. Understanding the convection heat-transfer mechanism in steam-assisted-gravity-drainage process[J]. SPE Journal, 2013, 18(6): 1202-1215.
doi: 10.2118/167258-PA
|
[21] |
STEPHEN R D. Aquathermal pressuring and geopressure evaluation[J]. AAPG Bulletin, 1982, 66(7): 931-939.
|
[22] |
BOWERS G L. Pore pressure estimation from velocity data: Accounting from overpressure mechanisms besides undercompaction[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 276.
|
[23] |
BERRYMAN J G. Thermal conductivity of porous media[J]. Applied Physics Letters, 2005, 86(3): 143.
|
[24] |
TRAN D, LONG N, BUCHANAN L, et al. Odelling thermal geomechanical effects on simulation porosity[C]// Paper ARMA-08-087 presented at the 42nd U.S. Rock Mechanics Symposium, San Francisco, California, USA, June 2008.
|
[25] |
SOMERTON W H, KEESE J A, CHU S L. Thermal behavior of unconsolidated oil sands[J]. Society of Petroleum Engineers Journal, 1973, 14(5): 513-521.
doi: 10.2118/4506-PA
|
[26] |
AHERNE A L, MAINI B. Fluid movement in the SAGD process: A review of the Dover project[J]. Journal of Canadian Petroleum Technology, 2008, 47(1): 31-37.
|
[27] |
BIRRELL G. Heat transfer ahead of a SAGD steam chamber, a study of thermocouple data from phase B of the underground test facility (Dover project)[J]. Journal of Canadian Petroleum Technology, 2001, 42(3): 40-47.
|
[28] |
JI D Q, ZHONG H, DONG M Z, et al. Study of heat transfer by thermal expansion of connate water ahead of a steam chamber edge in the steam-assisted-gravity-drainage process[J]. Fuel, 2015, 150: 592-601.
doi: 10.1016/j.fuel.2015.02.065
|