综合研究

连续加载应力下真实裂缝流场和渗透率演化规律数值研究

  • 梁运培 ,
  • 张怀军 ,
  • 王礼春 ,
  • 秦朝中 ,
  • 田键 ,
  • 陈强 ,
  • 史博文
展开
  • 1.重庆大学煤矿灾害动力学与控制全国重点实验室,重庆 400044
    2.重庆大学资源与安全学院,重庆 400044
    3.天津大学表层地球系统科学研究院,天津 300072
梁运培(1971—),男,博士,教授,主要从事非常规天然气开发、煤矿瓦斯灾害防治等方面的科研与教学工作。地址:重庆市沙坪坝区沙正街174号重庆大学A区,邮政编码:400044。E-mail:liangyunpei@cqu.edu.cn

收稿日期: 2023-01-18

  网络出版日期: 2024-01-03

基金资助

国家自然科学基金项目“多重非对称采动卸压边界动态演化特征及对瓦斯运移影响机制”(52174166);国家自然科学基金项目“自发渗吸微观动力学特性及其在两相达西模型中的量化”(127072053);中国博士后面上项目“孔隙尺度气-水界面演化对致密砂岩气流动作用机理研究”(2021M700606)

Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress

  • Yunpei LIANG ,
  • Huaijun ZHANG ,
  • Lichun WANG ,
  • Chaozhong QIN ,
  • Jian TIAN ,
  • Qiang CHEN ,
  • Bowen SHI
Expand
  • 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
    2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
    3. Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China

Received date: 2023-01-18

  Online published: 2024-01-03

摘要

采用数值随机生成的裂缝研究有效应力作用下裂缝导流能力变化忽视了真实裂缝开度非均质性的影响。研究采用巴西劈裂法对不同种类岩石造缝获取真实裂缝样品,使用三维光学扫描仪提取真实裂缝形貌特征及裂缝开度信息,建立接触力学模型和单相渗流模型,开展了有效应力连续加载下的裂缝流场和渗透率演化行为数值研究,并分析了传统的经验公式对真实裂缝案例的适应性。结果表明:①巴西劈裂的25 mm×50 mm真实裂缝在原始开度、表面粗糙度等微观结构上具有非均质性强特征,与直接通过数值生成的达到平均化尺度的裂缝存在明显不同;②由于非均质性的影响,不同岩石裂缝在有效应力加载过程中的裂缝开度、接触面积和空间相关长度在x方向和y方向上的演化行为有显著区别,且对渗透率变化的控制机理不同;③采用传统的经验公式拟合裂缝应力敏感渗透率演化时,拟合程度随着裂缝样品的非均质性增加而出现偏差增大。研究认为,传统经验公式在研究达到平均化尺度的裂缝时具有较好的应用基础,但针对非均质性强或整体未能满足平均化裂缝的应用受限。

本文引用格式

梁运培 , 张怀军 , 王礼春 , 秦朝中 , 田键 , 陈强 , 史博文 . 连续加载应力下真实裂缝流场和渗透率演化规律数值研究[J]. 油气藏评价与开发, 2023 , 13(6) : 834 -843 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.06.015

Abstract

In the study of fracture conductivity evolution under stress using direct numerically generated fracture models, a key issue is the neglect of the real fracture's heterogeneous microstructure. To address this, the Brazilian splitting method is used to create fractures in various types of rocks. A 3D optical topography scanner then captures the actual fracture morphology and aperture information. This data forms the basis for establishing a contact mechanics model and a single-phase seepage model, which are used to study the evolution of the fracture flow field and permeability under continuous stress loading. The study also evaluates the applicability of traditional empirical formulas to real fracture cases. The findings are significant: ① The 25 mm×50 mm real fracture in Brazilian splitting shows obvious heterogeneity in the microstructure of the original aperture and surface roughness, which is obviously different from the fracture that reaches the average scale directly generated by numerical method. ② In the process of stress loading, the fracture aperture, contact area and spatial correlation length show different evolution characteristics in the x direction and y direction due to the fracture heterogeneity, and the control mechanism of permeability change is different; ③ When the traditional empirical formula is used to fit the stress-sensitive permeability evolution of fracture, the deviation of the fitting degree increases with the increase of the heterogeneity of fracture samples. This study suggested that the traditional empirical formula has a good application basis in the study of the fracture reaching the averaging scale, but it is limited in the application of the fracture with strong heterogeneity or failure to meet the averaging scale.

参考文献

[1] 刘学伟. 页岩储层水力压裂支撑裂缝导流能力影响因素[J]. 断块油气田, 2020, 27(3): 394-398.
[1] LIU Xuewei. Influencing factors of hydraulic propped fracture conductivity in shale reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 394-398.
[2] 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38(3): 1-14.
[2] ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14.
[3] KUMARI W G P, RANJITH P G, PERERA M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138-154.
[4] 温庆志, 王淑婷, 高金剑, 等. 复杂缝网导流能力实验研究[J]. 油气地质与采收率, 2016, 23(5): 116-121.
[4] WEN Qingzhi, WANG Shuting, GAO Jinjian, et al. Research on flow conductivity experiment in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(5): 116-121.
[5] 刘先珊, 曾南豆, 李涛, 等. 基于改进PFC流固耦合算法的页岩水力压裂裂缝扩展研究[J]. 中南大学学报(自然科学版), 2022, 53(9): 3545-3560.
[5] LIU Xianshan, CENG Nandou, LI Tao, et al. Propagation investigation of hydraulic fractures for shales considering improved hydro-mechanical coupling algorithm based on PFC software[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3545-3560.
[6] ZHAO H F, CHEN H, LIU G H, et al. New insight into mechanisms of fracture network generation in shale gas reservoir[J]. Journal of Petroleum Science and Engineering, 2013, 110: 193-198.
[7] 许丹, 胡瑞林, 高玮, 等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发, 2015, 42(4): 523-528.
[7] XU Dan, HU Ruilin, GAO Wei, et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4): 523-528.
[8] ZOU J P, JIAO Y Y, TAN F, et al. Complex hydraulic-fracture-network propagation in a naturally fractured reservoir[J]. Computers and Geotechnics, 2021, 135: 104165.
[9] SAHAI R, MOGHANLOO R G. Proppant transport in complex fracture networks: A review[J]. Journal of Petroleum Science and Engineering, 2019, 182: 1-16.
[10] TONG S Y, MOHANTY K K. Proppant transport study in fractures with intersections[J]. Fuel, 2016, 181: 463-477.
[11] GUO T K, ZHANG S C, GAO J, et al. Experimental study of fracture permeability for stimulated reservoir volume(SRV) in shale formation[J]. Transport in Porous Media, 2013, 98(3): 525-542.
[12] 邹雨时, 张士诚, 马新仿. 页岩压裂剪切裂缝形成条件及其导流能力研究[J]. 科学技术与工程, 2013, 13(18): 5152-5157.
[12] ZOU Yushi, ZHANG Shicheng, MA Xinfang. Study on formation conditions and conductivity of shale fractured shear fractures[J]. Science Technology and Engineering, 2013, 13(18): 5152-5157.
[13] 苟兴豪. 页岩自支撑裂缝导流能力模型研究[D]. 成都: 西南石油大学, 2017.
[13] GOU Xinghao. Research on numerical method for unpropped fracture conductivity of shale[D]. Chengdu: Southwest Petroleum University, 2017.
[14] LIU K R, SHENG J J. Experimental study of the effect of water-shale interaction on fracture generation and permeability change in shales under stress anisotropy[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 11-15.
[15] ZHOU T, ZHANG S C, YANG L, et al. Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 893-905.
[16] JAVANMARD H, EBIGBO A, WALSH S, et al. No-flow fraction(NFF) permeability model for rough fractures under normal stress[J]. Water Resources Research, 2021, 57(3): 1-19.
[17] KLING T, SCHWARZ J O, WENDLER F, et al. Fracture flow due to hydrothermally induced quartz growth[J]. Advances in Water Resources, 2017, 107: 93-107.
[18] XIE L Z, GAO C, REN L, et al. Numerical investigation of geometrical and hydraulic properties in a single rock fracture during shear displacement with the Navier-Stokes equations[J]. Environmental Earth Sciences, 2015, 73(11): 7061-7074.
[19] ZIMMERMAN R W, BODVARSSON G S. Hydraulic conductivity of rock fractures[J]. Transport in Porous Media, 1996, 23(1): 1-30.
[20] WANG L C, CARDNAS M B. Development of an empirical model relating permeability and specific stiffness for rough fractures from numerical deformation experiments[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 4977-4989.
[21] LEE H S, CHO T F. Hydralic characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics and Rock Engineering, 2002, 35(4): 299-318.
[22] HOPKINS D L. The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations, and faults[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 175-202.
[23] PYRAK-NOLTE L J, MORRIS J P. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 245-262.
[24] PETROVITCH C L, PYRAK-NOLTE L J, NOLTE D D. Combined scaling of fluid flow and seismic stiffness in single fractures[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1613-1623.
[25] KLING T, VOGLER D, PASTEWKA L, et al. Numerical simulations and validation of contact mechanics in a granodiorite fracture[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2805-2824.
[26] SUTERA S P, SKALAK R. The history of Poiseuille’s law[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20.
[27] GONG Y B, SEDGHI M, PIRI M. Dynamic pore-scale modeling of residual trapping following imbibition in a rough-walled fracture[J]. Transport in Porous Media, 2021, 140(1): 143-179.
[28] WITHERSPOON P A, WANG J, IWAI K, et al. Validity of cubic law for fluid-flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016-1024.
[29] 李新岭. 数字裂缝建模及渗流属性计算研究[D]. 成都: 电子科技大学, 2020.
[29] LI Xinling. Research on digital fracture modeling and seepage property calculation[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
文章导航

/