[1] |
刘学伟. 页岩储层水力压裂支撑裂缝导流能力影响因素[J]. 断块油气田, 2020, 27(3): 394-398.
|
|
LIU Xuewei. Influencing factors of hydraulic propped fracture conductivity in shale reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 394-398.
|
[2] |
赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38(3): 1-14.
|
|
ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14.
|
[3] |
KUMARI W G P, RANJITH P G, PERERA M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138-154.
doi: 10.1016/j.fuel.2018.05.040
|
[4] |
温庆志, 王淑婷, 高金剑, 等. 复杂缝网导流能力实验研究[J]. 油气地质与采收率, 2016, 23(5): 116-121.
|
|
WEN Qingzhi, WANG Shuting, GAO Jinjian, et al. Research on flow conductivity experiment in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(5): 116-121.
|
[5] |
刘先珊, 曾南豆, 李涛, 等. 基于改进PFC流固耦合算法的页岩水力压裂裂缝扩展研究[J]. 中南大学学报(自然科学版), 2022, 53(9): 3545-3560.
|
|
LIU Xianshan, CENG Nandou, LI Tao, et al. Propagation investigation of hydraulic fractures for shales considering improved hydro-mechanical coupling algorithm based on PFC software[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3545-3560.
|
[6] |
ZHAO H F, CHEN H, LIU G H, et al. New insight into mechanisms of fracture network generation in shale gas reservoir[J]. Journal of Petroleum Science and Engineering, 2013, 110: 193-198.
doi: 10.1016/j.petrol.2013.08.046
|
[7] |
许丹, 胡瑞林, 高玮, 等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发, 2015, 42(4): 523-528.
|
|
XU Dan, HU Ruilin, GAO Wei, et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4): 523-528.
|
[8] |
ZOU J P, JIAO Y Y, TAN F, et al. Complex hydraulic-fracture-network propagation in a naturally fractured reservoir[J]. Computers and Geotechnics, 2021, 135: 104165.
doi: 10.1016/j.compgeo.2021.104165
|
[9] |
SAHAI R, MOGHANLOO R G. Proppant transport in complex fracture networks: A review[J]. Journal of Petroleum Science and Engineering, 2019, 182: 1-16.
|
[10] |
TONG S Y, MOHANTY K K. Proppant transport study in fractures with intersections[J]. Fuel, 2016, 181: 463-477.
doi: 10.1016/j.fuel.2016.04.144
|
[11] |
GUO T K, ZHANG S C, GAO J, et al. Experimental study of fracture permeability for stimulated reservoir volume(SRV) in shale formation[J]. Transport in Porous Media, 2013, 98(3): 525-542.
doi: 10.1007/s11242-013-0157-7
|
[12] |
邹雨时, 张士诚, 马新仿. 页岩压裂剪切裂缝形成条件及其导流能力研究[J]. 科学技术与工程, 2013, 13(18): 5152-5157.
|
|
ZOU Yushi, ZHANG Shicheng, MA Xinfang. Study on formation conditions and conductivity of shale fractured shear fractures[J]. Science Technology and Engineering, 2013, 13(18): 5152-5157.
|
[13] |
苟兴豪. 页岩自支撑裂缝导流能力模型研究[D]. 成都: 西南石油大学, 2017.
|
|
GOU Xinghao. Research on numerical method for unpropped fracture conductivity of shale[D]. Chengdu: Southwest Petroleum University, 2017.
|
[14] |
LIU K R, SHENG J J. Experimental study of the effect of water-shale interaction on fracture generation and permeability change in shales under stress anisotropy[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 11-15.
|
[15] |
ZHOU T, ZHANG S C, YANG L, et al. Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 893-905.
doi: 10.1016/j.jngse.2016.10.036
|
[16] |
JAVANMARD H, EBIGBO A, WALSH S, et al. No-flow fraction(NFF) permeability model for rough fractures under normal stress[J]. Water Resources Research, 2021, 57(3): 1-19.
|
[17] |
KLING T, SCHWARZ J O, WENDLER F, et al. Fracture flow due to hydrothermally induced quartz growth[J]. Advances in Water Resources, 2017, 107: 93-107.
doi: 10.1016/j.advwatres.2017.06.011
|
[18] |
XIE L Z, GAO C, REN L, et al. Numerical investigation of geometrical and hydraulic properties in a single rock fracture during shear displacement with the Navier-Stokes equations[J]. Environmental Earth Sciences, 2015, 73(11): 7061-7074.
doi: 10.1007/s12665-015-4256-3
|
[19] |
ZIMMERMAN R W, BODVARSSON G S. Hydraulic conductivity of rock fractures[J]. Transport in Porous Media, 1996, 23(1): 1-30.
|
[20] |
WANG L C, CARDNAS M B. Development of an empirical model relating permeability and specific stiffness for rough fractures from numerical deformation experiments[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 4977-4989.
doi: 10.1002/jgrb.v121.7
|
[21] |
LEE H S, CHO T F. Hydralic characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics and Rock Engineering, 2002, 35(4): 299-318.
doi: 10.1007/s00603-002-0028-y
|
[22] |
HOPKINS D L. The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations, and faults[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 175-202.
|
[23] |
PYRAK-NOLTE L J, MORRIS J P. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 245-262.
doi: 10.1016/S1365-1609(99)00104-5
|
[24] |
PETROVITCH C L, PYRAK-NOLTE L J, NOLTE D D. Combined scaling of fluid flow and seismic stiffness in single fractures[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1613-1623.
doi: 10.1007/s00603-014-0591-z
|
[25] |
KLING T, VOGLER D, PASTEWKA L, et al. Numerical simulations and validation of contact mechanics in a granodiorite fracture[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2805-2824.
doi: 10.1007/s00603-018-1498-x
|
[26] |
SUTERA S P, SKALAK R. The history of Poiseuille’s law[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20.
doi: 10.1146/fluid.1993.25.issue-1
|
[27] |
GONG Y B, SEDGHI M, PIRI M. Dynamic pore-scale modeling of residual trapping following imbibition in a rough-walled fracture[J]. Transport in Porous Media, 2021, 140(1): 143-179.
doi: 10.1007/s11242-021-01606-1
|
[28] |
WITHERSPOON P A, WANG J, IWAI K, et al. Validity of cubic law for fluid-flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016-1024.
doi: 10.1029/WR016i006p01016
|
[29] |
李新岭. 数字裂缝建模及渗流属性计算研究[D]. 成都: 电子科技大学, 2020.
|
|
LI Xinling. Research on digital fracture modeling and seepage property calculation[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|