油气藏评价与开发 >
2024 , Vol. 14 >Issue 6: 849 - 856
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.06.004
地热数值模拟与油藏数值模拟方法对比分析
收稿日期: 2024-04-11
网络出版日期: 2024-12-10
基金资助
中国石油科技部项目“东部油区地热成因机制与开发潜力研究”(2021DJ5501)
Comparative analysis of geothermal and reservoir numerical simulation methods
Received date: 2024-04-11
Online published: 2024-12-10
地热能和石油均是重要的地下能源。地热数值模拟和油藏数值模拟是评估、优化地热能和石油开发利用过程中的关键技术,在能源领域具有重要指导意义。通过对比地热数值模拟和油藏数值模拟数学模型的基础架构、数值解法、案例分析,揭示了数值模拟方法在开发2种能源过程中的相似点和差异性。在模拟方法方面,地热数值模拟侧重于热传导和地温场变化特征,而油藏数值模拟则更加关注流体动力学和原油开采过程;在模拟结果方面,地热数值模拟可用于地热资源开发规划和关键生产参数优化,而油藏数值模拟则更多地应用于油田储量评估、注采参数优化和油井生产管理。通过对比分析为地热能和石油工程领域的研究和应用提供了理论参考和实践指导,有助于推动2种能源资源的高效利用和可持续发展。
盖长城 , 李洪达 , 任路 , 曹伟 , 郝杰 . 地热数值模拟与油藏数值模拟方法对比分析[J]. 油气藏评价与开发, 2024 , 14(6) : 849 -856 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.004
Geothermal energy and petroleum are both vital subsurface energy resources. Numerical simulation of geothermal and reservoir systems is a key technology for evaluating and optimizing the development and utilization of these resources, playing an essential guiding role in the energy sector. By comparing the foundational mathematical models, numerical methods, and case studies of geothermal and reservoir simulations, this study highlights the similarities and differences in their application to the development of these two energy sources. In terms of simulation methods, geothermal numerical simulations focus on heat conduction and geothermal field variation, whereas reservoir numerical simulations emphasize fluid dynamics and the oil extraction process. Regarding simulation results, geothermal simulations are used for geothermal resource development planning and the optimization of key production parameters, while reservoir simulations are primarily applied to reserve estimation, injection-production parameter optimization, and well production management. This comparative analysis provides theoretical and practical guidance for research and applications in geothermal energy and petroleum engineering, promoting the efficient and sustainable utilization of both energy resources.
[1] | 中华人民共和国国务院新闻办公室. 新时代的中国能源发展[EB/OL]. (2020-12-21)[2024-3-21]. https://english.www.gov.cn/archive/whitepaper/202012/21/content_5571916.html. |
State Council Information Office of the People's Republic of China. Energy in China's new era[EB/OL]. (2020-12-21)[2024-03-21]. https://english.www.gov.cn/archive/whitepaper/202012/21/content_5571916.html. | |
[2] | 黄其励, 高虎, 赵勇强. 我国可再生能源中长期(2030、2050)发展战略目标与途径[J]. 中国工程科学, 2011, 13(6): 88-94. |
HUANG Qili, GAO Hu, ZHAO Yongqiang. The mid-long term (2030, 2050) development of renewable energy in China: Strategic target and roadmap[J]. Engineering Science, 2011, 13(6): 88-94. | |
[3] | 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. |
ZOU Caineng, ZHAO Qun, ZHANG Guosheng, et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10. | |
[4] | 马宏源. 砂岩热储地热群井系统优化数值模拟研究[D]. 济南: 山东大学, 2023. |
MA Hongyuan. Numerical research of sulti-well geothermal system study optimization in sandstone geothermal reservoir[D]. Jinan: Shandong University, 2023. | |
[5] | 张鑫. 地热水藏开发模拟和温度场变化规律研究[D]. 青岛: 中国石油大学(华东), 2020. |
ZHANG Xin. Simulation of geothermal water reservoir development and study of the temperature field variation[D]. Qingdao: China University of Petroleum(East China), 2020. | |
[6] | 张允, 康志江, 马郡伟, 等. 深层离散裂缝油藏多尺度流固耦合数值模拟方法[J]. 地学前缘, 2023, 30(6): 365-370. |
ZHANG Yun, KANG Zhijiang, MA Junwei, et al. A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model[J]. Earth Science Frontiers, 2023, 30(6): 365-370. | |
[7] | 刘芳. 多孔介质与流体空间交界面滑移效应及其影响机理[D]. 济南: 山东大学, 2012. |
LIU Fang. The influence slip effect and its influencing mechanism between a porous medium and fluid space[D]. Jinan: Shandong University, 2012. | |
[8] | ZHANG B L, ZHAO Y. A numerical method for simulation of forced convection in a composite porous/fluid system[J]. International Journal of Heat and Fluid Flow, 2000, 21(4): 432-441. |
[9] | 关春雨. 油藏数值模拟与油藏工程方法关系理论研究[D]. 大庆: 东北石油大学, 2012. |
GUAN Chunyu. Relation theory of numerical reservoir simulation and reservoir engineering[D]. Daqing: Northeast Petroleum University, 2012. | |
[10] | 潘举玲, 黄尚军, 祝杨, 等. 油藏数值模拟技术现状与发展趋势[J]. 油气地质与采收率, 2002, 9(4): 69-71. |
PAN Juling, HUANG Shangjun, ZHU Yang, et al. State of the art and developing tendency on reservoir numerical simulation[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(4): 69-71. | |
[11] | 刘晓旭. 三场耦合的数学模型研究及有限元解法[D]. 成都: 西南石油学院, 2005. |
LIU Xiaoxu. The mathematical model research of three fields coupling and finite element method solution[D]. Chengdu: Southwest Petroleum Institute, 2005. | |
[12] | 王少椿, 付铄然, 郭凌空, 等. 基于模拟有限差分法的水驱油藏渗透率时变数值模拟[J]. 计算物理, 2023, 40(5): 597-605. |
WANG Shaochun, FU Shuoran, GUO Lingkong, et al. Numerical simulation of water-flooding reservoirs considering permeability time variation based on mimetic finite difference method[J]. Chinese Journal of Computational Physics, 2023, 40(5): 597-605. | |
[13] | LI L L, ABUSHAIKHA A. A fully-implicit parallel framework for complex reservoir simulation with mimetic finite difference discretization and operator-based linearization[J]. Computational Geosciences, 2022, 26(4): 1-17. |
[14] | GEIGER S, ROBERTS S, AI S K M, et al. Combining finite volume and finite element methods to simulate fluid flow in geologic media[J]. Anziam Joural, 2002, 44: 180-201. |
[15] | DURLOFSKY L J. A triangle based mixed finite element-finite volume technique for modeling two phase through porous media[J]. Journal of Computational Physics, 1993, 105(2): 252-266. |
[16] | AARNES J E, KIPPE V, LIE K A. Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels[J]. Advances in Water Resources, 2005, 28(3): 257-271. |
[17] | 董刚. 基于间断有限元法的油藏数值模拟研究[D]. 大庆: 东北石油大学, 2022. |
DONG Gang. Research on numerical simulation of reservoir based on discontinuous Galerkin finite element method[D]. Daqing: Northeast Petroleum University, 2022. | |
[18] | 唐潮. 基于有限体积方法的复杂裂缝数值模拟研究[D]. 成都: 西南石油大学, 2023. |
TANG Chao. Research on numerical simulation of complex fractures based on finite volume method[D]. Chengdu: Southwest Petroleum University, 2023. | |
[19] | 冯勇, 石广仁, 米石云, 等. 有限体积法及其在盆地模拟中的应用[J]. 西南石油学院学报, 2001, 23(5): 12-14. |
FENG Yong, SHI Guangren, MI Shiyun, et al. The finite volume method and its application in basin modeling[J]. Journal of Southwest Petroleum Institute, 2001, 23(5): 12-15. | |
[20] | 梁斌, 任瑞川, 程琦, 等. 基于数值模拟的油藏渗流影响因素研究[J]. 石油化工应用, 2021, 40(12): 56-60. |
LIANG Bin, REN Ruichuan, CHENG Qi, et al. Research on influencing factors of reservoir seepage based on numerical simulation[J]. Petrochemical Industry Application, 2021, 40(12): 56-60. | |
[21] | 何海燕, 刘先山, 耿少阳, 等. 基于渗流-温度双场耦合的油藏型储气库数值模拟[J]. 油气藏评价与开发, 2023, 13(6): 819-826. |
HE Haiyan, LIU Xianshan, GENG Shaoyang, et al. Numerical simulation of UGS facilities rebuilt from oil reservoirs based on the coupling of seepage and temperature fields[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 819-826. | |
[22] | 郭志鹏, 卜宪标, 赵源, 等. 基于热流固耦合的单井增强地热系统数值模拟[J]. 哈尔滨工程大学学报, 2024, 45(6): 1066-1075. |
GUO Zhipeng, BU Xianbiao, ZHAO Yuan, et al. Numerical simulation of a single-well enhanced geothermal system based on thermal-hydraulic-mechanical coupling[J]. Journal of Harbin Engineering University, 2024, 45(6): 1066-1075. | |
[23] | 黄艳艳, 那金, 雷宏武. 开封地区砂岩孔隙热储回灌化学堵塞数值模拟研究[J]. 太阳能学报, 2024, 45(2): 225-235. |
HUANG Yanyan, NA Jin, LEI Hongwu. Numerical simulation study of chemical clogging of sandstone pore thermal reservoirs reservoir backfill in Kaifeng area[J]. Acta Energiae Solaris Sinica, 2024, 45(2): 225-235. | |
[24] | 乔欣. 水驱油藏储层物性时变数值模拟及流场评价研究[D]. 青岛: 中国石油大学(华东), 2019. |
QIAO Xin. Numerical simulation of flow field reservoir considering physical properties time variation for waterflooding reservoir[D]. Qingdao: China University of Petroleum(East China), 2019. | |
[25] | 肖鹏, 窦斌, 田红. 地热储层单裂隙岩体渗流传热数值模拟研究[J]. 钻探工程, 2021, 48(2): 16-28. |
XIAO Peng, DOU Bin, TIAN Hong. Numerical simulation of seepage and heat transfer in single fractured rock mass of geothermal reservoirs[J]. Drilling Engineering, 2021, 48(2): 16-28. | |
[26] | 巩法成. 增强型地热系统多场耦合数值模拟与开发模式优化[D]. 青岛: 中国石油大学(华东), 2023. |
GONG Facheng. Multi-field coupling numerical simulation of enhanced geothermal system and development model optimization[D]. Qingdao: China University of Petroleum(East China), 2023. | |
[27] | 罗爽. 深地热对井系统渗流传热问题的多尺度数值分析[D]. 北京: 清华大学, 2020. |
LUO Shuang. Numerical analysis of coupled fluid flow and heat transfer at multiple scales in deep geothermal systems[D]. Beijing: Tsinghua University, 2020. | |
[28] | 谷建伟. 高含水开发期基于微观渗流机理的宏观油藏数值模拟研究[D]. 青岛: 中国海洋大学, 2005. |
GU Jianwei. The study of macro numerical reservoir simulation based macro seepage mechanism during high water cut development period[D]. Qingdao: Ocean University of China, 2005. | |
[29] | 程洪亮. 油藏数值模拟温度场问题研究[D]. 长春: 吉林大学, 2008. |
CHENG Hongliang. Study on reservoir temperature field with numerical simulation[D]. Changchun: Jilin University, 2008. | |
[30] | 谢洋洋. 吉林松原中深层地热供暖潜力及模型研究[D]. 长春: 吉林大学, 2019. |
XIE Yangyang. Research on medium-deep geothermal heating potential and model assessment in Songyuan, Jilin[D]. Changchun: Jilin University, 2019. | |
[31] | 丁云霄. 多种岩石油藏数值模拟自适应网格法的研究[D]. 合肥: 中国科学技术大学, 2015. |
DING Yunxiao. Adaptive mesh refinement for numerical simulation in reservoirs comprised of different rock types[D]. Hefei: University of Science and Technology of China, 2015. | |
[32] | 吴斌. 油藏数值模拟自适应网格法中若干问题研究[D]. 合肥: 中国科学技术大学, 2014. |
WU Bin. Research on some problems in adaptive mesh refinement for reservoir numerical simulation[D]. Hefei: University of Science and Technology of China, 2014. | |
[33] | 廉培庆, 计秉玉, 段太忠, 等. 大型复杂油藏CPU与GPU混合并行数值模拟[J]. 中国科技论文, 2020, 15(5): 537-541. |
LIAN Peiqing, JI Bingyu, DUAN Taizhong, et al. Hybrid parallel numerical simulation of CPU and GPU in large-scale and complex oil reservoir[J]. China Sciencepaper, 2020, 15(5): 537-541. | |
[34] | 杨剑, 黄旭日. 基于网格分割的油藏数值模拟并行[J]. 石化技术, 2021, 28(6): 76-77. |
YANG Jian, HUANG Xuri. Parallel algorithm for reservoir numerical simulation based on grid segmentation[J]. Technical Industry Technology, 2021, 28(6): 76-77. |
/
〈 | 〉 |