油气藏评价与开发 >
2025 , Vol. 15 >Issue 3: 515 - 521
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.03.019
深层页岩气纤维压裂及纤维暂堵技术研究与应用
收稿日期: 2024-11-05
网络出版日期: 2025-05-28
基金资助
国家自然科学基金项目“深层页岩压裂人工干预转向多裂缝动态扩展机制”(52374044);四川省科技计划项目“页岩气暂堵转向压裂颗粒运动机理与裂缝扩展机制”(2023JDRC0008);中国石油天然气股份有限公司科技专项“非常规储层改造关键技术研究—页岩气复杂防控及高效压裂技术与试验”(2023ZZ28YJ05)
Research and application of fiber fracturing and fiber temporary plugging technology for deep shale gas
Received date: 2024-11-05
Online published: 2025-05-28
随着目前技术的发展,纤维的作用不仅仅在于其防止支撑剂回流方面,而更在于加砂压裂中的携砂作用,以及封堵、优化裂缝形态等方面的作用,即纤维网络加砂压裂技术。针对纤维携砂和纤维暂堵技术,可有效解决现如今深层页岩气面临的支撑剂近井堆积和暂堵有效性不足等问题,提升体积压裂改造效果。为此,以四川盆地南部深层页岩气区块为研究工区,开展纤维携砂、纤维暂堵机理研究和室内物模实验,实现对纤维材料优选及性能评价,然后根据工区区域地质和工程特征,通过压裂软件进行模拟计算,确定深层页岩气水力裂缝宽度,形成现场试验方案设计,最后对试验井的压裂施工、返排、封堵及压裂效果进行跟踪评价。研究结果表明:纤维具有较好的辅助携砂和柔性架桥的能力,通过对纤维材料分子结构进行改性,并加入一定量的结构稳定剂,可形成不连续的团簇状支撑,大幅度提高支撑剂的铺置效果及导流能力。根据缝宽模拟计算,深层页岩气水力裂缝宽度介于2~5 mm,结合裂缝宽度、支撑剂粒径、砂比组合优选纤维类型,可实现裂缝全支撑。相比常规压裂工艺井,加注了改性纤维+结构稳定剂的纤维携砂工艺试验井取得了较好的增产及防砂效果。纤维可用于缝内暂堵,施工过程中压力响应明显,易造成后续施工压力过高导致加砂困难,优化加注时机有利于后续整体加砂施工。另外,纤维还可用于解决深层页岩气井井间压窜问题,通过强化缝口暂堵、封堵天然裂缝,防止水力裂缝沟通远端天然裂缝造成进一步窜通。该研究基于四川盆地南部深层页岩储层特征,形成了一套适用于深层页岩气的纤维材料性能指标,包括纤维的长度、稳定性、配伍性、降解率等,提出了“进、远、高、防”四位一体的纤维加注工艺及设计方法,为今后页岩气效益开发、技术优化和压裂工艺调整提供了有力支撑。
胡俊杰 , 卢聪 , 郭建春 , 曾波 , 郭兴午 , 马莅 , 孙玉铎 . 深层页岩气纤维压裂及纤维暂堵技术研究与应用[J]. 油气藏评价与开发, 2025 , 15(3) : 515 -521 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.019
With technological advancements, fibers now serve roles beyond proppant backflow prevention, including proppant transport, plugging, fracture morphology optimization, and other aspects, namely, fiber-network proppant fracturing technology. The fiber-based proppant transport and fiber temporary plugging technologies can effectively address issues currently faced by deep shale gas, such as proppant near-wellbore accumulation and insufficient temporary plugging effectiveness, thereby improving the effectiveness of volumetric fracturing stimulation. To this end, the study was conducted in a deep shale gas block in the southern Sichuan Basin, investigating fiber-based proppant transport and fiber temporary plugging mechanisms, as well as laboratory physical simulations to optimize and evaluate the performance of fiber materials. Based on the regional geological and engineering characteristics of the study area, fracturing software simulations were carried out to determine the hydraulic fracture width for deep shale gas. A field test plan was then developed, and the fracturing construction, flowback, plugging, and fracturing effectiveness of the test wells were monitored and evaluated. The research results indicated that fibers had strong proppant transport assistance and flexible bridging capabilities. By modifying the molecular structure of fiber materials and adding a certain amount of structural stabilizers, discontinuous cluster-like support structures can be formed, significantly enhancing the placement effect and conductivity of proppants. Based on fracture width simulation calculations, the hydraulic fracture width for deep shale gas is between 2 to 5 mm. By optimizing fiber types based on fracture width, proppant grain size, and concentration, full support of fractures can be achieved. Compared to conventional fracturing wells, the test wells with modified fiber + structural stabilizer for sand-carrying fracturing exhibited better production increase and proppant flowback prevention. Fibers can be used for temporary in-fracture plugging. During the construction process, the pressure response is evident, which may lead to excessively high pressure during subsequent operations, making proppant addition difficult. Optimizing the timing of fiber injection is beneficial for the subsequent overall sand addition process. Additionally, fibers can also be used to address the inter-well gas migration issue in deep shale gas wells by strengthening the temporary plugging of fracture openings and sealing natural fractures, thereby preventing further communication between hydraulic fractures and distant natural fractures. The study, based on the characteristics of deep shale reservoirs in the southern Sichuan Basin, has developed a set of performance indicators for fiber materials suitable for deep shale gas, including fiber length, stability, compatibility, and degradation rate. It also proposes a four-in-one fiber injection process and design method, focusing on “entry, distance, height, and prevention”. It provides strong support for the future economic development, technology optimization, and fracturing process adjustments of shale gas.
1 | 付永强, 杨学锋, 周朗, 等. 川南页岩气体积压裂技术发展与应用[J]. 石油科技论坛, 2022, 41(3): 18-25. |
FU Yongqiang, YANG Xuefeng, ZHOU Lang, et al. Development and application of shale gas volume fracturing technology in southern Sichuan Basin[J]. Petroleum Science and Technology Forum, 2022, 41(3): 18-25. | |
2 | 胡俊杰, 周小金, 周拿云, 等. 井筒听诊器技术在川南页岩气田的应用研究[J]. 钻采工艺, 2022, 45(6): 65-69. |
HU Junjie, ZHOU Xiaojin, ZHOU Nayun, et al. Application and research of WellWatcher technology in southern Sichuan shale gas field[J]. Drilling & Production Technology, 2022, 45(6): 65-69. | |
3 | 桑宇, 周小金, 郭兴午, 等. 水平井压裂楔形缝内支撑剂输运特征数值模拟[J]. 科学技术与工程, 2023, 23(23): 9911-9917. |
SANG Yu, ZHOU Xiaojin, GUO Xingwu, et al. Numerical simulation of proppant transport characteristics in horizontal well fracturing wedge fracture[J]. Science Technology and Engineering, 2023, 23(23): 9911-9917. | |
4 | BROWNE D J, WILSON B A. Proppant flowback control in deviated shallow gas wells[J]. The journal of Canadian Petroleum Technology, 2003, 42(11): 29-34. |
5 | 张朝举, 张绍彬, 谭明文, 等. 预防支撑剂回流的纤维增强技术实验研究[J]. 钻采工艺, 2005, 28(4): 90-91. |
ZHANG Chaoju, ZHANG Shaobin, TAN Mingwen, et al. Lab study on fiber enhanced proppant to prevent flowback after fracturing[J]. Drilling & Production Technology, 2005, 28(4): 90-91. | |
6 | KIM J Y, ZHOU L, MORITA N. Study of degradable fibers with and without guar gum as a proppant transport agent using large-scale slot equipment[J]. SPE Journal. 2021, 26(1): 262-280. |
7 | 郭兴, 张建忠, 孙晓, 等. 纤维对高导流裂缝压裂影响的实验研究[J]. 钻探工程, 2021, 48(10): 13-20. |
GUO Xing, ZHANG Jianzhong, SUN Xiao, et al. Effect of fiber on fracturing of high conductivity fractures[J]. Drilling Engineering, 2021, 48(10): 13-20. | |
8 | DENNEY D. Channel fracturing-paradigm shift in tight gas stimulation[J]. Journal of Petroleum Technology, 2011, 63(10): 82-85. |
9 | 蒋恕, 李园平, 杜凤双, 等. 提高页岩气藏压裂井射孔簇产气率的技术进展[J]. 油气藏评价与开发, 2023, 13(1): 9-22. |
JIANG Shu, LI Yuanping, DU Fengshuang, et al. Recent advancement for improving gas production rate from perforated clusters in fractured shale gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 9-22. | |
10 | LYU M, GUO T, QU Z, et al. Experimental study on proppant transport within complex fractures[J]. SPE Journal, 2022, 27(5): 2960-2979. |
11 | 王庆群. 压裂液纤维水合混配装置的研制[J]. 石油机械, 2017, 45(5): 99-102. |
WANG Qingqun. Fracturing fluid fiber hydration mixing device[J]. China Petroleum Machinery, 2017, 45(5): 99-102. | |
12 | 盖玉叶, 张贵玲, 宋时权, 等. 压裂用纤维携砂性能影响因素分析[J]. 石油工业技术监督, 2021, 37(3): 7-8. |
GAI Yuye, ZHANG Guiling, SONG Shiquan, et al. Analysis of factors affecting sand-carrying performance of fiber for fracturing[J]. Technology Supervision in Petroleum Industry, 2021, 37(3): 7-8. | |
13 | 岳文翰, 肖勇军, 井翠, 等. 纤维滑溜水携砂技术研究及应用[J]. 钻采工艺, 2023, 46(5): 151-156. |
YUE Wenhan, XIAO Yongjun, JING Cui, et al. Study and field application of fiber slickwater proppant carrying capacity[J]. Drilling & Production Technology, 2023, 46(5): 151-156. | |
14 | 杨兆中, 袁健峰, 张景强, 等. 四川盆地海相页岩水平井压裂裂缝研究进展及认识[J]. 油气藏评价与开发, 2024, 14(4): 600-609. |
YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, et al. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. | |
15 | 王艳林, 方正魁, 刘林泉, 等. 新型可降解纤维暂堵转向压裂技术研究及应用[J]. 钻采工艺, 2020, 43(6): 52-54. |
WANG Yanlin, FANG Zhengkui, LIU Linquan, et al. Research and application of new degradable fiber temporary plugging and diversion fracturing technology[J]. Drilling & Production Technology, 2020, 43(6): 52-54. | |
16 | TABATABAEI M, TALEGHANI A D, LI G, et al. Shape memory polymers as lost circulation materials for sealing wide-opened natural fractures[J]. SPE Drilling & Completion, 2021, 36(4): 931-942. |
17 | YANG C, ZHOU F, FENG W, et al. Plugging mechanism of fibers and particulates in hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2019, 176: 396-402. |
18 | 刘颖, 杨晨, 史涛. 颗粒与纤维在水力裂缝内封堵机理的可视化实验研究[J]. 石油科学通报, 2022, 7(2): 196-203. |
LIU Ying, YANG Chen, SHI Tao. Visualization study on the plugging mechanism of fibers and particulates in the hydraulic fracture[J]. Petroleum Science Bulletin, 2022, 7(2): 196-203. | |
19 | 胡小虎, 刘华, 何辉, 等. 考虑压裂缝网连通的页岩气井组试井分析方法[J]. 油气藏评价与开发, 2025, 15(1): 79-87. |
HU Xiaohu, LIU Hua, HE Hui, et al. Well test analysis method of shale gas well groups considering fracture network connectivity[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 79-87. | |
20 | 张柟乔, 刘青, 王俐佳, 等. 深层页岩气防压窜工艺在L203H53-1井的应用[J]. 钻采工艺, 2023, 46(6): 158-164. |
ZHANG Nanqiao, LIU Qing, WANG Lijia, et al. Application of deep shale gas frac-hit prevention countermeasures in well L203H53[J]. Drilling & Production Technology, 2023, 46(6): 158-164. | |
21 | 廖波兰, 卢亚平. 纤维压裂液性能的基础性研究[J]. 矿冶, 2014, 23(1): 37-42. |
LIAO Bolan, LU Yaping. Fundamental study on fiber fracturing fluid properties[J]. Mining and Metallurgy, 2014, 23(1): 37-42. | |
22 | 吴鹏程, 汪瑶, 付利, 等. 深层页岩气水平井“一趟钻”技术探索与实践[J]. 石油机械, 2023, 51(8): 26-33. |
WU Pengcheng, WANG Yao, FU Li, et al. Exploration and practice of “one trip” technology for deep shale gas horizontal wells[J].China Petroleum Machinery, 2023, 51(8): 26-33. | |
23 | 赵康, 陈民锋, 王艺文, 等. 四川盆地SZ页岩气藏气井产量变化规律及递减预测新模型[J]. 中国海上油气, 2024, 36(3):129-136. |
ZHAO Kang, CHEN Minfeng, WANG Yiwen, et al. A new model for production variation patterns and decline prediction of SZ shale gas reservoir in Sichuan basin[J]. China Offshore Oil and Gas, 2024, 36(3): 129-136. | |
24 | 张皎生, 杨焕英, 王晶, 等. 基于复杂缝网精细刻画的致密油气藏水平井多段压裂数值模拟技术[J]. 中国海上油气, 2023, 35(4): 103-111. |
ZHANG Jiaosheng, YANG Huanying, WANG Jing, et al. A method for numerical simulation of multi-stage fracturing of horizontal well in tight oil and gas reservoirs based on fine characterization of complex fracture network[J]. China Offshore Oil and Gas, 2023, 35(4): 103-111. |
/
〈 |
|
〉 |