油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (3): 515-521.doi: 10.13809/j.cnki.cn32-1825/te.2025.03.019

• 工程工艺 • 上一篇    下一篇

深层页岩气纤维压裂及纤维暂堵技术研究与应用

胡俊杰1,2,3(), 卢聪1(), 郭建春1, 曾波2,3, 郭兴午2,3, 马莅2,3, 孙玉铎2,3   

  1. 1.西南石油大学油气藏地质及开发工程全国重点实验室,四川 成都 610500
    2.中国石油西南油气田公司页岩气研究院,四川 成都 610056
    3.页岩气评价与开采四川省重点实验室,四川 成都 610056
  • 收稿日期:2024-11-05 发布日期:2025-05-28 出版日期:2025-06-26
  • 通讯作者: 卢聪 E-mail:hujunjie127@petrochina.com.cn;lucong@swpu.edu.cn
  • 作者简介:胡俊杰(1992—),男,在读博士研究生,工程师,主要从事油气藏增产改造理论与技术的研究。地址:四川省成都市成华区建设北路一段83号,邮政编码:610056。E-mail:hujunjie127@petrochina.com.cn
  • 基金资助:
    国家自然科学基金项目“深层页岩压裂人工干预转向多裂缝动态扩展机制”(52374044);四川省科技计划项目“页岩气暂堵转向压裂颗粒运动机理与裂缝扩展机制”(2023JDRC0008);中国石油天然气股份有限公司科技专项“非常规储层改造关键技术研究—页岩气复杂防控及高效压裂技术与试验”(2023ZZ28YJ05)

Research and application of fiber fracturing and fiber temporary plugging technology for deep shale gas

HU Junjie1,2,3(), LU Cong1(), GUO Jianchun1, ZENG Bo2,3, GUO Xingwu2,3, MA Li2,3, SUN Yuduo2,3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Shale Gas Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610056, China
    3. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610056, China
  • Received:2024-11-05 Online:2025-05-28 Published:2025-06-26
  • Contact: LU Cong E-mail:hujunjie127@petrochina.com.cn;lucong@swpu.edu.cn

摘要:

随着目前技术的发展,纤维的作用不仅仅在于其防止支撑剂回流方面,而更在于加砂压裂中的携砂作用,以及封堵、优化裂缝形态等方面的作用,即纤维网络加砂压裂技术。针对纤维携砂和纤维暂堵技术,可有效解决现如今深层页岩气面临的支撑剂近井堆积和暂堵有效性不足等问题,提升体积压裂改造效果。为此,以四川盆地南部深层页岩气区块为研究工区,开展纤维携砂、纤维暂堵机理研究和室内物模实验,实现对纤维材料优选及性能评价,然后根据工区区域地质和工程特征,通过压裂软件进行模拟计算,确定深层页岩气水力裂缝宽度,形成现场试验方案设计,最后对试验井的压裂施工、返排、封堵及压裂效果进行跟踪评价。研究结果表明:纤维具有较好的辅助携砂和柔性架桥的能力,通过对纤维材料分子结构进行改性,并加入一定量的结构稳定剂,可形成不连续的团簇状支撑,大幅度提高支撑剂的铺置效果及导流能力。根据缝宽模拟计算,深层页岩气水力裂缝宽度介于2~5 mm,结合裂缝宽度、支撑剂粒径、砂比组合优选纤维类型,可实现裂缝全支撑。相比常规压裂工艺井,加注了改性纤维+结构稳定剂的纤维携砂工艺试验井取得了较好的增产及防砂效果。纤维可用于缝内暂堵,施工过程中压力响应明显,易造成后续施工压力过高导致加砂困难,优化加注时机有利于后续整体加砂施工。另外,纤维还可用于解决深层页岩气井井间压窜问题,通过强化缝口暂堵、封堵天然裂缝,防止水力裂缝沟通远端天然裂缝造成进一步窜通。该研究基于四川盆地南部深层页岩储层特征,形成了一套适用于深层页岩气的纤维材料性能指标,包括纤维的长度、稳定性、配伍性、降解率等,提出了“进、远、高、防”四位一体的纤维加注工艺及设计方法,为今后页岩气效益开发、技术优化和压裂工艺调整提供了有力支撑。

关键词: 深层页岩气, 工程技术, 低渗透气藏, 纤维, 体积压裂, 封堵, 压裂效果评价, 现场应用

Abstract:

With technological advancements, fibers now serve roles beyond proppant backflow prevention, including proppant transport, plugging, fracture morphology optimization, and other aspects, namely, fiber-network proppant fracturing technology. The fiber-based proppant transport and fiber temporary plugging technologies can effectively address issues currently faced by deep shale gas, such as proppant near-wellbore accumulation and insufficient temporary plugging effectiveness, thereby improving the effectiveness of volumetric fracturing stimulation. To this end, the study was conducted in a deep shale gas block in the southern Sichuan Basin, investigating fiber-based proppant transport and fiber temporary plugging mechanisms, as well as laboratory physical simulations to optimize and evaluate the performance of fiber materials. Based on the regional geological and engineering characteristics of the study area, fracturing software simulations were carried out to determine the hydraulic fracture width for deep shale gas. A field test plan was then developed, and the fracturing construction, flowback, plugging, and fracturing effectiveness of the test wells were monitored and evaluated. The research results indicated that fibers had strong proppant transport assistance and flexible bridging capabilities. By modifying the molecular structure of fiber materials and adding a certain amount of structural stabilizers, discontinuous cluster-like support structures can be formed, significantly enhancing the placement effect and conductivity of proppants. Based on fracture width simulation calculations, the hydraulic fracture width for deep shale gas is between 2 to 5 mm. By optimizing fiber types based on fracture width, proppant grain size, and concentration, full support of fractures can be achieved. Compared to conventional fracturing wells, the test wells with modified fiber + structural stabilizer for sand-carrying fracturing exhibited better production increase and proppant flowback prevention. Fibers can be used for temporary in-fracture plugging. During the construction process, the pressure response is evident, which may lead to excessively high pressure during subsequent operations, making proppant addition difficult. Optimizing the timing of fiber injection is beneficial for the subsequent overall sand addition process. Additionally, fibers can also be used to address the inter-well gas migration issue in deep shale gas wells by strengthening the temporary plugging of fracture openings and sealing natural fractures, thereby preventing further communication between hydraulic fractures and distant natural fractures. The study, based on the characteristics of deep shale reservoirs in the southern Sichuan Basin, has developed a set of performance indicators for fiber materials suitable for deep shale gas, including fiber length, stability, compatibility, and degradation rate. It also proposes a four-in-one fiber injection process and design method, focusing on “entry, distance, height, and prevention”. It provides strong support for the future economic development, technology optimization, and fracturing process adjustments of shale gas.

Key words: deep shale gas, engineering technology, low permeability gas reservoir, fiber, volumetric fracturing, plugging, fracturing effectiveness evaluation, field application

中图分类号: 

  • TE377