油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (2): 237-249.doi: 10.13809/j.cnki.cn32-1825/te.2025.02.008
康毅力1(), 邵俊华1, 刘嘉榕1, 陈明君1, 游利军1, 陈雪妮1, 曹望坤1,2
收稿日期:
2024-09-26
发布日期:
2025-04-01
出版日期:
2025-04-26
作者简介:
康毅力(1964—),男,博士,教授,博士生导师,主要从事储层保护理论与技术、非常规天然气和油气田开发地质方向的研究与教学工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:cwctkyl@163.com
基金资助:
KANG Yili1(), SHAO Junhua1, LIU Jiarong1, CHEN Mingjun1, YOU Lijun1, CHEN Xueni1, CAO Wangkun1,2
Received:
2024-09-26
Online:
2025-04-01
Published:
2025-04-26
摘要:
为形成对于深部致密煤藏系统评价,保证深部致密煤藏就地气化工程的高效、经济和安全实施,基于模糊层次分析法形成了深部致密煤藏适度就地气化可行性评价方法,包括:①建立资源条件、储集条件和保存条件在内的3类一级指标和煤级、煤岩储层厚度和煤岩储层压力系数等参数在内的18项二级指标的评价指标集和以“可行”“基本可行”“不可行”为评语的分级评语集;②通过层次分析法,明确各类指标权重;③采用梯形型隶属函数计算各指标隶属度,构建评价矩阵;④将评价矩阵和权重矩阵合成,确定候选区致密煤藏适度就地气化对“可行”“基本可行”“不可行”的隶属度,根据最大隶属度原则,明确候选区深部致密煤藏适度就地气化可行性。将评价方法应用于鄂尔多斯盆地M区块深部8号煤藏适度就地气化可行性评价,评价结果表明:M区块深部8号煤藏适度就地气化对应“可行”“基本可行”“不可行”的隶属度分别为0.413、0.425和0.162,最大隶属度为0.425,确定8号煤藏适度就地气化可行性为“基本可行”。深部致密煤藏适度就地气化可行性评价方法为综合性的定量评价方法,更加注重对保存条件的评价,为深部致密煤藏适度就地气化工程实施提供了科学指导。
中图分类号:
KANG Yili,SHAO Junhua,LIU Jiarong, et al. Feasibility evaluation method and application of moderate in-situ gasification in deep tight coal & gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 237-249.
表4
深部致密煤藏适度就地气化可行性评价指标评级体系"
一级指标 | 二级指标 | 分类评价级别 | |||
---|---|---|---|---|---|
优 | 良 | 中 | 劣 | ||
资源条件 | 煤级 | HM/CY | SM/QM | FM/PM | WY/JM |
水分/% | (0,15] | (15,35] | (35,55] | >55 | |
灰分/% | (0,20] | (20,35] | (35,50] | >50 | |
挥发分/% | (0,10] | (10,30] | (30,50] | >50 | |
硫分/% | (0,1] | (1,2.5] | (2.5,4] | >4 | |
储集条件 | 煤岩储层厚度/m | 5 | (5,12] | [2,5) | <2或>12 |
煤岩储层倾角/° | 35 | [12,35) | (35,70] | <12或>70 | |
煤岩储层埋深/m | (1 500,2 500] | (1 000,1 500] (2 500,3 500] | (500,1 000] (3 500,4 500) | ≤500或≥4 500 | |
原生结构煤和碎裂煤占比/% | >70 | (50,70] | (30,50] | ≤30 | |
煤岩储层连续性及变化趋势/% | ≤25 | (25,45] | (45,65] | >65 | |
煤岩储层夹矸层厚度/m | ≤0.4 | (0.4,0.8] | (0.8,1] | >1 | |
保存条件 | 含水层类型 | 承压水区 | 弱径流区 | 强径流区 | 供水区/泄水区 |
断层断距/m | (0,0.1δ] | (0.1δ,0.3δ] | (0.3δ,0.5δ] | >0.5δ | |
煤岩储层距断层距离/m | >200 | (125,200] | (50,125] | ≤50 | |
顶盖层岩性 | 泥岩、粉砂质泥岩、膏质盐岩 | 粉砂岩、细砂岩、泥灰岩 | 中砂岩 | 粗砂岩 | |
δcoal/δrc | 0.154 | (0.154,0.414] | [0.059,0.154) | <0.059或>0.414 | |
煤岩储层含气量/(m3/t) | (20,35] | (15,20] | (8,15] | ≤8 | |
煤岩储层压力系数 | >1.6 | (1.2,1.6] | (0.7,1.2] | ≤0.7 |
表7
评价指标隶属函数模糊等级划分"
一级 指标 | 二级指标 | 模糊等级划分值 | ||||
---|---|---|---|---|---|---|
r1 | r' | r2 | r3 | |||
资源 条件 | 煤级 | 0.1 | 0.2 | 0.3 | ||
水分/% | 15 | 35 | 55 | |||
灰分/% | 20 | 35 | 50 | |||
挥发分/% | 10 | 30 | 50 | |||
硫分/% | 1 | 2.5 | 4 | |||
储集 条件 | 煤岩储层厚度/m | 2 | 3 | 5 | 9 | 12 |
煤岩储层倾角/(°) | 12 | 23 | 35 | 52 | 70 | |
煤岩储层埋深/m | 500 | 1 500 | 4 500 | |||
原生结构煤和碎裂煤占比/% | 30 | 50 | 2 500 | 3 500 | 70 | |
煤岩储层连续性及变化趋势/% | 25 | 45 | 65 | |||
夹矸层厚度/m | 0.4 | 0.8 | 1.0 | |||
保存 条件 | 含水层类型 | 0.1 | 0.2 | 0.3 | ||
断层断距/m | 0.6 | 1.8 | 3.0 | |||
距断层距离/m | 50 | 125 | 200 | |||
顶盖层岩性 | 0.1 | 0.2 | 0.3 | |||
δcoal/δrc | 0.590 | 0.107 | 0.154 | 0.297 | 0.414 | |
煤岩储层含气量/(m3/t) | 8 | 17 | 35 | |||
煤岩储层压力系数 | 0.7 | 1.2 | 1.6 |
表8
评价指标权重计算结果"
一级指标 | 权重 | 二级指标 | 同级权重 | 综合权重 |
---|---|---|---|---|
资源条件 | 0.28 | 煤级 | 0.51 | 0.14 |
水分 | 0.03 | 0.01 | ||
灰分 | 0.06 | 0.02 | ||
挥发分 | 0.27 | 0.07 | ||
硫分 | 0.13 | 0.04 | ||
储集条件 | 0.60 | 煤岩储层厚度 | 0.27 | 0.16 |
煤岩储层倾角 | 0.13 | 0.08 | ||
煤岩储层埋深 | 0.21 | 0.13 | ||
原生结构煤和碎裂煤占比 | 0.04 | 0.02 | ||
煤岩储层连续性及变化趋势 | 0.22 | 0.13 | ||
夹矸层厚度 | 0.13 | 0.08 | ||
保存条件 | 0.12 | 含水层类型 | 0.08 | 0.01 |
断层断距 | 0.08 | 0.01 | ||
煤岩储层距断层距离 | 0.10 | 0.01 | ||
顶盖层岩性 | 0.14 | 0.02 | ||
δcoal/δrc | 0.20 | 0.02 | ||
煤岩储层含气量 | 0.18 | 0.02 | ||
煤岩储层压力系数 | 0.22 | 0.03 |
表10
评价矩阵计算结果"
一级指标 | 二级指标 | “可行” | “基本可行” | “不可行” |
---|---|---|---|---|
资源条件 | 煤级 | 0.000 0 | 0.500 0 | 0.500 0 |
水分 | 1.000 0 | 0.000 0 | 0.000 0 | |
灰分 | 0.000 0 | 0.677 0 | 0.323 0 | |
挥发分 | 0.214 5 | 0.785 5 | 0.000 0 | |
硫分 | 0.200 0 | 0.800 0 | 0.000 0 | |
储集条件 | 煤岩储层厚度 | 0.350 0 | 0.650 0 | 0.000 0 |
煤岩储层倾角 | 0.000 0 | 0.000 0 | 1.000 0 | |
煤岩储层埋深 | 0.400 0 | 0.600 0 | 0.000 0 | |
原生结构煤和碎裂煤占比 | 0.000 0 | 0.632 5 | 0.367 5 | |
煤岩储层连续性及变化趋势 | 0.750 0 | 0.250 0 | 0.000 0 | |
夹矸层厚度 | 1.000 0 | 0.000 0 | 0.000 0 | |
保存条件 | 含水层类型 | 1.000 0 | 0.000 0 | 0.000 0 |
断层断距 | 1.000 0 | 0.000 0 | 0.000 0 | |
距断层距离 | 1.000 0 | 0.000 0 | 0.000 0 | |
顶盖层岩性 | 1.000 0 | 0.000 0 | 0.000 0 | |
δcoal/δrc | 0.937 1 | 0.062 9 | 0.000 0 | |
煤岩储层含气量 | 0.277 8 | 0.722 2 | 0.000 0 | |
煤岩储层压力系数 | 0.620 0 | 0.380 0 | 0.000 0 |
[1] | 中华人民共和国自然资源部. 固体矿产资源储量分类: GB/T 17766—2020[S]. 北京: 中国标准出版社, 2020. |
Ministry of Natural Resources of the People’s Republic of China. Classification of solid mineral resources reserves: GB/T 17766—2020 [S]. Beijing: Standards Press of China, 2020. | |
[2] | 中国煤炭地质总局. 中国煤炭资源赋存规律与资源评价[M]. 北京: 科学出版社, 2016. |
China General Administration of Coal Geology. China’s coal resource existence law and resource evaluation[M]. Beijing: Science Press, 2016. | |
[3] | 邹才能, 陈艳鹏, 孔令峰, 等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发, 2019, 46(2): 195-204. |
ZOU Caineng, CHEN Yanpeng, KONG Lingfeng, et al. Underground coal gasification and its strategic significance to the development of natural gas industry in China[J]. Petroleum Exploration and Development, 2019, 46(2): 195-204. | |
[4] | 孔令峰, 张军贤, 李华启, 等. 我国中深层煤炭地下气化商业化路径[J]. 天然气工业, 2020, 40(4): 156-165. |
KONG Lingfeng, ZHANG Junxian, LI Huaqi, et al. Commercialization path of medium-deep underground coal gasification in China[J]. Natural Gas Industry, 2020, 40(4): 156-165. | |
[5] | 秦勇, 易同生, 周永锋, 等. 煤炭地下气化碳减排技术研究进展与未来探索[J]. 煤炭学报, 2024, 49(1): 495-512. |
QIN Yong, YI Tongsheng, ZHOU Yongfeng, et al. Research progress and future study of carbon emission reduction for UCG[J]. Journal of China Coal Society, 2024, 49(1): 495-512. | |
[6] | 陈井瑞, 杨瑞召, 韩枫涛, 等. 煤炭地下气化开发利用现状与发展趋势[J]. 中国煤炭, 2024, 50(2): 13-23. |
CHEN Jingrui, YANG Ruizhao, HAN Fengtao, et al. Current status and development trends of the development and utilization of underground coal gasification[J]. China Coal, 2024, 50(2): 13-23. | |
[7] | 谢和平, 鞠杨, 高明忠, 等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报, 2018, 43(5): 1210-1219. |
XIE Heping, JU Yang, GAO Mingzhong, et al. Theories and technologies for in-situ fluidized mining of deep underground coal resources[J]. Journal of China Coal Society, 2018, 43(5): 1210-1219. | |
[8] | YOUNGER P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water and the Environment, 2011, 30(2): 127-140. |
[9] | 袁亮, 张通, 张庆贺, 等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报, 2022, 47(6): 2131-2139. |
YUAN Liang, ZHANG Tong, ZHANG Qinghe, et al. Construction of green, low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society, 2022, 47(6): 2131-2139. | |
[10] | 杨兰和, 宋全友, 李耀娟. 煤炭地下气化工程[M]. 北京: 中国矿业大学出版社, 2001. |
YANG Lanhe, SONG Quanyou, LI Yaojuan. Underground gasification of coal[M]. Beijing: China University of Mining and Technology Press, 2001. | |
[11] | 刘淑琴, 刘欢, 郭巍, 等. 深部煤炭地下气化制氢先进能效分析[J]. 煤炭学报, 2024, 49(2): 1138-1147. |
LIU Shuqin, LIU Huan, GUO Wei, et al. Advanced energy analysis of deep UCG to hydrogen production[J]. Journal of China Coal Society, 2024, 49(2): 1138-1147. | |
[12] | 刘江. 深部煤层原位适度气化协调气体多尺度传质行为研究[D]. 成都: 西南石油大学, 2023. |
LIU Jiang. Study on in-situ moderate gasification to enhance multiscale mass transfer behavior in deep coal reservoir[D]. Chengdu: Southwest Petroleum University, 2023. | |
[13] | 刘嘉榕. 深部致密煤藏适度就地气化选区评价方法研究[D]. 成都: 西南石油大学, 2024. |
LIU Jiarong. Research on the evaluation method of moderate in-situ gasification selection of deep tight coal reservoirs[D]. Chengdu: Southwest Petroleum University, 2024. | |
[14] | BHUTTO A W, BAZMI A A, ZAHEDI G. Underground coal gasification: From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1): 189-214. |
[15] | 段天宏, 周丽敏, 王作棠, 等. 改进的两阶段法及其在煤炭地下气化制天然气项目选址中的应用[J]. 煤炭工程, 2014, 46(3): 4-7. |
DUAN Tianhong, ZHOU Limin, WANG Zuotang, et al. Improved two-stage method and application to site selection of coal underground gasification to natural gas project[J]. Coal Engineering, 2014, 46(3): 4-7. | |
[16] | HAGGIN J. Key tests set for underground coal gasification[J]. Chemical & Engineering News, 1983, 61(29): 15-19. |
[17] | YOUNG B C. Evaluating the feasibility of underground coal gasification in Thailand[J]. Fuel & Energy Abstracts, 1997, 38(5): 315. |
[18] | SOLC J, BOYSEN J E, YOUNG B C, et al. The commercial feasibility of underground coal gasification in southern Thailand[C]. Proceedings of coal-energy and the environment, vol. 1: Thirteenth Annual International Pittsburgh Coal Conference, Pittsburgh, PA, September 1996. |
[19] | KHADSE A, MOHAMMED Q, MAHAJANI S, et al. Underground coal gasification: A new clean coal utilization technique for India[J]. Energy, 2007, 32(11): 2061-2071. |
[20] | VYAS D U, SINGH R P. Worldwide developments in UCG and Indian initiative[J]. Procedia Earth & Plan-etary Science, 2015, 11: 29-37. |
[21] | 郑超, 余岚, 张巨峰, 等. 煤炭地下气化资源条件的模糊层次综合评价[J]. 矿业工程研究, 2019, 34(1): 40-44. |
ZHENG Chao, YU Lan, ZHANG Jufeng, et al. Fuzzy hierarchical comprehensive evaluation on resource conditions for underground coal gasification[J]. Mining Engineering Research, 2019, 34(1): 40-44. | |
[22] | 王志刚, 付小锦, 梁杰, 等. 天津静海含煤区无井式煤炭地下气化选址地质评价模型[J]. 煤田地质与勘探, 2019, 47(3): 41-48. |
WANG Zhigang, FU Xiaojin, LIANG Jie, et al. Geological evaluation model for site selection of underground coal gasification without wells in the coal-bearing area of Jinghai, Tianjin[J]. Coalfield Geology and Exploration, 2019, 47(3): 41-48. | |
[23] | 侯海海, 邵龙义, 唐跃, 等. 基于多层次模糊数学的中国低煤阶煤层气选区评价标准: 以吐哈盆地为例[J]. 中国地质, 2014, 41(3): 1002-1009. |
HOU Haihai, SHAO Longyi, TANG Yue, et al. Evaluation criteria of low coal rank coalbed methane constituency in China based on multilevel fuzzy mathematics: a case study of Tuha Basin[J]. Geology in China, 2014, 41(3): 1002-1009. | |
[24] | HUANG W G, WANG Z T, XIN L, et al. Feasibility study on underground coal gasification of No. 15 seam in Fenghuangshan Mine[J]. Journal-South African Institute of Mining and Metallurgy, 2012, 112(10): 897-903. |
[25] | 黄温钢. 残留煤地下气化综合评价与稳定生产技术研究[D]. 徐州: 中国矿业大学, 2014. |
HUANG Wengang. Research on comprehensive evaluation and stable production technology of underground gasif-ication of residual coal[D]. Xuzhou: China University of Mining and Technology, 2014. | |
[26] | 黄温钢, 王作棠. 煤炭地下气化变权-模糊层次综合评价模型[J]. 西安科技大学学报, 2017, 37(4): 500-507. |
HUANG Wengang, WANG Zuotang. Comprehensive evaluation model of fuzzy analytic hierarchy process with variable weight for underground coal gasification[J]. Journal of Xi’an University of Science and Technology, 2017, 37(4): 500-507. | |
[27] | 尹振勇, 许浩, 汤达祯, 等. 准东地区煤炭气化地质评价与有利区预测[J]. 科学技术与工程, 2020, 20(10): 3845-3851. |
YIN Zhenyong, XU Hao, TANG Dazhen, et al. Geological evaluation for underground coal gasification and favourable area optimization in eastern Junggar Basin[J]. Science Technology and Engineering, 2020, 20(10): 3845-3851. | |
[28] | 许浩, 陈艳鹏, 辛福东, 等. 煤炭地下气化面临的挑战与技术对策[J]. 煤炭科学技术, 2022, 50(1): 265-274. |
XU Hao, CHEN Yanpeng, XIN Fudong, et al. Challenges faced by underground coal gasification and technical countermeasures[J]. Coal Science and Technology, 2022, 50(1): 265-274. | |
[29] | YANG D M, KOUKOUZAS N, GREEN M, et al. Recent development on underground coal gasification and subsequent CO2 storage[J]. Journal of the Energy Institute, 2016, 89(4): 469-484. |
[30] | 王安民, 曹代勇, 魏迎春. 煤层气选区评价方法探讨: 以准噶尔盆地南缘为例[J]. 煤炭学报, 2017, 42(4): 950-958. |
WANG Anmin, CAO Daiyong, WEI Yingchun. Discussion on methods for selected areas evaluation of coalbed methane: A case study of southern Juggar Basin[J]. Journal of China Coal Society, 2017, 42(4): 950-958. | |
[31] | KHAN M, MMBAGA J, SHIRAZI A, et al. Modelling underground coal gasification: A review[J]. Energies, 2015, 8(11): 12603-12668. |
[32] | 康毅力, 孙琳娜, 房大志, 等. 氧化处理缓解煤岩储层煤粉堵塞损害实验[J]. 天然气工业, 2020, 40(11): 68-75. |
KANG Yili, SUN Linna, FANG Dazhi, et al. Experiment of relieving coal dust blockage damage in coal reservoirs by oxidation treatment[J]. Natural Gas Industry, 2020, 40(11): 68-75. | |
[33] | 单佩金, 梁杰, 王皓正, 等. 不同体积分数氧气气化剂下煤炭地下气化过程㶲分析[J]. 煤炭学报, 2021, 46(8): 2673-2680. |
SHAN Peijin, LIANG Jie, WANG Haozheng, et al. Exergy analysis of underground coal gasification with different oxygen concentrations[J]. Journal of China Coal Society, 2021, 46(8): 2673-2680. | |
[34] | 周贺. 煤炭地下气化地质选区主控因素及产气潜力评价: 以黔西松河井田为例[D]. 徐州: 中国矿业大学, 2022. |
ZHOU He. Evaluation of main controlling factors and gas production potential of coal underground gasification geological zoning: Taking Qianxi Songhe well field as an example[D]. Xuzhou: China University of Mining and Technology, 2022. | |
[35] | 刘淑琴, 师素珍, 冯国旭, 等. 煤炭地下气化地质选址原则与案例评价[J]. 煤炭学报, 2019, 44(8): 2531-2538. |
LIU Shuqin, SHI Suzhen, FENG Guoxu, et al. Geological site selection and evaluation for underground coal gasification[J]. Journal of China Coal Society, 2019, 44(8): 2531-2538. | |
[36] | 刘淑琴, 梁杰, 余学东, 等. 不同煤种地下气化特性研究[J]. 中国矿业大学学报, 2003, 32(6): 28-32. |
LIU Shuqin, LIANG Jie, YU Xuedong, et al. Underground gasification characteristics of different coal types[J]. Journal of China University of Mining and Technology, 2003, 32(6): 28-32. | |
[37] | 周贺, 吴财芳, 蒋秀明, 等. 煤炭地下气化地质选区指标体系构建及有利区评价技术[J]. 地球科学, 2022, 47(5): 1777-1790. |
ZHOU He, WU Caifang, JIANG Xiuming, et al. Construction of geological selection index system and evaluation technology of favourable area for underground coal gasification[J]. Journal of Earth Science, 2022, 47(5): 1777-1790. | |
[38] | BIELOWICZ B, KASIŃSKI J. The possibility of underground gasification of lignite from polish deposits[J]. International Journal of Coal Geology, 2014, 131: 304-318. |
[39] | 吴蒙, 秦云虎, 李国璋, 等. 煤炭地下气化影响因素及评价方法研究进展[J]. 煤炭科学技术, 2022, 50(8): 259-269. |
WU Meng, QIN Yunhu, LI Guozhang, et al. Research progress on influencing factors and evaluation methods of underground coal gasification[J]. Coal Science and Technology, 2022, 50(8): 259-269. | |
[40] | 柳迎红, 梁新星, 梁杰, 等. 影响煤炭地下气化稳定性生产因素[J]. 煤炭科学技术, 2006, 34(11): 79-82. |
LIU Yinghong, LIANG Xinxing, LIANG Jie, et al. Factors influenced to stability of coal underground gasification[J]. Coal Science and Technology, 2006, 34(11): 79-82. | |
[41] | PEI P, NASAH J, SOLC J, et al. Investigation of the feasibility of underground coal gasification in North Dakota, United States[J]. Energy Conversion and Management, 2016, 113(2): 95-103. |
[42] | 赵岳, 黄温钢, 徐强, 等. 煤炭地下气化地质条件评价研究: 以江苏省朱寨井田为例[J]. 河南理工大学学报(自然科学版), 2018, 37(3): 1-11. |
ZHAO Yue, HUANG Wengang, XU Qiang, et al. Study on evaluation of geological conditions for underground coal gasification: Taking Zhuzhai minefield of Jiangsu Province as an example[J]. Journal of Henan Polytechnic University(Natural Science), 2018, 37(3): 1-11. | |
[43] | 陈亚伟, 王明玉, 李玮, 等. 煤炭地下气化地下水质量影响评价及其趋势分析[J]. 中国科学院大学学报, 2015, 32(3): 309-316. |
CHEN Yawei, WANG Mingyu, LI Wei, et al. Impact assessment and trend analysis of underground coal gasification on groundwater quality[J]. Journal of University of Chinese Academy of Sciences, 2015, 32(3): 309-316. | |
[44] | 谢明忠. 冀北榆树沟煤矿区褐煤地下气化地质条件分析[J]. 中国煤炭地质, 2008, 20(2): 9-11. |
XIE Mingzhong. Analysis of underground gasification geological condition in Yushugou coalmine area, northern Hebei Province[J]. Coal Geology of China, 2008, 20(2): 9-11. | |
[45] | 杨甫, 段中会, 马东民, 等. 煤炭地下气化技术进展[J]. 科技导报, 2020, 38(20): 71-85. |
YANG Fu, DUAN Zhonghui, MA Dongmin, et al. New development of coal gasification technology[J]. Science & Technology Review, 2020, 38(20): 71-85. | |
[46] | PERKINS G. Underground coal gasification-Part I: Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67(1): 158-187. |
[47] | 李永环, 王力, 刘钰川, 等. 煤炭地下气化技术现状及大庆油田发展潜力分析[J]. 石油地质与工程, 2024, 38(6): 125-126. |
LI Yonghuan, WANG Li, LIU Yuchuan, et al. Current status of underground coal gasification technology and development potential analysis of Daqing Oilfield[J]. Petroleum Geology & Engineering, 2024, 38(6): 125-126. | |
[48] | 汪云甲, 黄宗文, 汪应宏, 等. 矿产资源评价及其应用研究[M]. 北京: 中国矿业大学出版社, 1998. |
WANG Yunjia, HUANG Zongwen, WANG Yinghong, et al. Evaluation of mineral resources and its application[M]. Beijing: China University of Mining and Technology Press, 1998. | |
[49] | 易同生, 秦勇, 周永峰, 等. 煤炭地下气化项目技术经济评价研究进展述评[J]. 煤田地质与勘探, 2023, 51(7): 1-16. |
YI Tongsheng, QIN Yong, ZHOU Yongfeng, et al. Research advances on the techno-economic evaluation of UCG projects[J]. Coal Geology & Exploration, 2023, 51(7): 1-16. | |
[50] | 高向东, 王延斌, 张崇崇. 钻井中煤体结构特征与井壁稳定性分析研究[J]. 煤炭科学技术, 2016, 44(5): 95-99. |
GAO Xiangdong, WANG Yanbin, ZHANG Chongchong. Study and analysis on coal structure features during drilling operation and well stability[J]. Coal Science and Technology, 2016, 44(5): 95-99. | |
[51] | 秦勇, 易同生, 汪凌霞, 等. 面向项目风险控制的煤炭地下气化地质条件分析[J]. 煤炭学报, 2023, 48(1): 290-306. |
QIN Yong, YI Tongsheng, WANG Lingxia, et al. Analysis of geological conditions for risk control of UCG project[J]. Journal of China Coal Society, 2023, 48(1): 290-306. | |
[52] | SINGAN A, RANADE V. Deployment of underground coal gasification in India[J]. Current Science, 2017, 113(2): 218-227. |
[53] | 张金华, 陈艳鹏, 张梦媛, 等. 水文地质条件与煤炭地下气化的相互影响[J]. 煤炭工程, 2021, 53(12): 150-154. |
ZHANG Jinhua, CHEN Yanpeng, ZHANG Mengyuan, et al. Interaction between hydrogeological conditions and underground coal gasification[J]. Coal Engineering, 2021, 53(12): 150-154. | |
[54] | 刘淑琴, 畅志兵, 刘金昌. 深部煤炭原位气化开采关键技术及发展前景[J]. 矿业科学学报, 2021, 6(3): 261-270. |
LIU Shuqin, CHANG Zhibing, LIU Jinchang. Key technologies and prospect for in-situ gasification mining of deep coal resources[J]. Journal of Mining Science and Technology, 2021, 6(3): 261-270. | |
[55] | 张金华, 张梦媛, 陈艳鹏, 等. 煤炭地下气化现场试验进展与启示[J]. 煤炭科学技术, 2022, 50(2): 213-222. |
ZHANG Jinhua, ZHANG Mengyuan, CHEN Yanpeng, et al. Progress and revelation of underground coal gasification field test[J]. Coal Science and Technology, 2022, 50(2): 213-222. | |
[56] | 赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1): 1-6. |
ZHAO Mingdong, DONG Donglin, TIAN Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology, 2017, 2(1): 1-6. | |
[57] | 刘淑琴, 周蓉, 潘佳, 等. 煤炭地下气化选址决策及地下水污染防控[J]. 煤炭科学技术, 2013, 41(5): 23-27. |
LIU Shuqin, ZHOU Rong, PAN Jia, et al. Location selection and groundwater pollution prevention & control regarding underground coal gasification[J]. Coal Science and Technology, 2013, 41(5): 23-27. | |
[58] | 章新文, 王勇, 金芸芸, 等. 鄂尔多斯盆地南部旬-宜探区深部煤层气成藏条件与勘探潜力[J]. 石油地质与工程, 2024, 38(2): 77-81. |
ZHANG Xinwen, WANG Yong, JIN Yunyun, et al. Reservoir-forming conditions and exploration potential of deep coalbed methane in Xun-Yi exploration area,southern Ordos Basin[J]. Petroleum Geology & Engineering, 2024, 38(2): 77-81. | |
[59] | 蒋秀明, 吴财芳. 煤炭地下气化地质可行性和工艺适用性研究现状与进展[J]. 煤田地质与勘探, 2022, 50(5): 1-12. |
JIANG Xiuming, WU Caifang. A review: Geological feasibility and technological applicability of underground coal gasification[J]. Coalfield Geology & Exploration, 2022, 50(5): 1-12. | |
[60] | 刘淑琴, 张尚军, 牛茂斐, 等. 煤炭地下气化技术及其应用前景[J]. 地学前缘, 2016, 23(3): 97-102. |
LIU Shuqin, ZHANG Shangjun, NIU Maofei, et al. Technology process and application prospect of underground coal gasification[J]. Earth Science Frontiers, 2016, 23(3): 97-102. | |
[61] | 潘怡. 郭家河井田煤层气富集主控因素与富集区预测研究[D]. 西安: 西安科技大学, 2017. |
PAN Yi. Study on the main controlling factors and the prediction of the enrichment area of coalbed methane in Guojiahe Minefield[D]. Xi’an: Xi’an University of Science and Technology, 2017. | |
[62] | SU F Q, HAMANAKA A, ITAKURA K, et al. Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system[J]. Applied Energy, 2018, 223(2): 82-92. |
[63] | 陆银龙, 王连国, 唐芙蓉, 等. 煤炭地下气化过程中温度-应力耦合作用下燃空区覆岩裂隙演化规律[J]. 煤炭学报, 2012, 37(8): 1292-1298. |
LU Yinlong, WANG Lianguo, TANG Furong, et al. Fracture evolution of overlying strata over combustion cavity under thermal-mechanical interaction during underground coal gasification[J]. Journal of China Coal Society, 2012, 37(8): 1292-1298. | |
[64] | 刘培, 于水明, 王福国, 等. 珠江口盆地恩平凹陷海相泥岩盖层有效性评价及应用[J]. 天然气地球科学, 2017, 28(3): 452-459. |
LIU Pei, YU Shuiming, WANG Fuguo, et al. Cap rock effectiveness evaluation and application of marine mudstone in Enping Sag of Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2017, 28(3): 452-459. | |
[65] | 李曙光, 王成旺, 王红娜, 等. 大宁-吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探, 2022, 50(9): 59-67. |
LI Shuguang, WANG Chengwang, WANG Hongna, et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coalfield Geology & Exploration, 2022, 50(9): 59-67. | |
[66] | 李启晖, 任大忠, 甯波, 等. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88. |
LI Qihui, REN Dazhong, NING Bo, et al. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area, Ordos Basin[J]. Lithologic Reservoirs, 2024, 36(2): 76-88. | |
[67] | 金晓波. 渝东南地区深部煤层气成藏特征及有利区评价[J]. 非常规油气, 2024, 11(6): 25-33. |
JIN Xiaobo. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in southeastern Chongqing[J]. Unconventional Oil & Gas, 2024, 11(6): 25-33. | |
[68] | 郭广山, 徐凤银, 刘丽芳, 等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探, 2024, 52(2): 81-91. |
GUO Guangshan, XU Fengyin, LIU Lifang, et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area, Ordos Basin[J]. Coalfield Geology & Exploration, 2024, 52(2): 81-91. | |
[69] | 向文鑫, 桑树勋, 吴章利, 等. 贵州省煤层气规划区块煤储层特征与有利区优选[J]. 煤田地质与勘探, 2022, 50(3): 156-164. |
XIANG Wenxin, SANG Shuxun, WU Zhangli, et al. Characteristics of coal reservoirs and favorable areas classification and optimization of CBM planning blocks in Guizhou Province[J]. Coalfield Geology & Exploration, 2022, 50(3): 156-164. | |
[70] | 何发岐, 雷涛, 齐荣, 等. 鄂尔多斯盆地大牛地气田深部煤层气勘探突破及其关键技术[J]. 石油与天然气地质, 2024, 45(6): 1567-1576. |
HE Faqi, LEI Tao, QI Rong, et al. Breakthroughs and key technologies in deep coalbed methane exploration in the Daniudi gas field in the Ordos Basin[J]. Oil & Gas Geology, 2024, 45(6): 1567-1576. | |
[71] | 许晓凡, 杨铁梅, 邓志宇, 等. 深煤层可改造性测井评价方法研究[J]. 石油地质与工程, 2024, 38(5): 30-35. |
XU Xiaofan, YANG Tiemei, DENG Zhiyu, et al. Logging evaluation of the transformability potential for deep coalbed methane reservoir[J]. Petroleum Geology & Engineering, 2024, 38(5): 30-35. | |
[72] | 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破[J]. 石油与天然气地质, 2024, 45(6): 1555-1566. |
LI Yahui. Exploration practices of and recent production breakthroughs in deep middle-rank coalbed methane in the Daniudi gas field, Ordos Basin[J]. Oil & Gas Geology, 2024, 45(6): 1555-1566. | |
[73] | 彭文利, 薛冽, 胡斌, 等. 准噶尔盆地东部煤层气地质特征及有利区优选[J]. 非常规油气, 2015, 2(5): 7-12. |
PENG Wenli, XUE Lie, HU Bin, et al. CBM geological characteristics and favorable zone optimization in eastern Juggar Basin[J]. Unconventional Oil & Gas, 2015, 2(5): 7-12. | |
[74] | 宣强磊. 基于层次分析-模糊综合评价法的煤矿顶板安全评价[J]. 化工装备技术, 2023, 44(6): 11-15. |
XUAN Qianglei. Safety evaluation of coal mine roof based on analytic hierarchy process fuzzy comprehensive evaluation method[J]. Chemical Equipment Technology, 2023, 44(6): 11-15. |
[1] | 武玺. 沁水盆地高阶煤煤层气水平井高效开发技术及实践 [J]. 油气藏评价与开发, 2025, 15(2): 167-174. |
[2] | 胡秋嘉, 刘春春, 张建国, 崔新瑞, 王千, 王琪, 李俊, 何珊. 基于机器学习的煤层气井产能预测与压裂参数优化 [J]. 油气藏评价与开发, 2025, 15(2): 266-273. |
[3] | 张敏, 金忠康, 冯绪波. 高含水油藏流动非均质性的表征及应用 [J]. 油气藏评价与开发, 2025, 15(2): 274-283. |
[4] | 罗宪波, 冯海潮, 刘东, 郑伟, 王树涛, 王公昌. 海上大井距高强度蒸汽吞吐开发规律及开发策略 [J]. 油气藏评价与开发, 2025, 15(1): 116-123. |
[5] | 柴妮娜, 李嘉瑞, 张力文, 王俊杰, 刘亚鹏, 朱伦. 夹层型陆相页岩油储层压裂裂缝扩展实验研究 [J]. 油气藏评价与开发, 2025, 15(1): 124-130. |
[6] | 张涛, 陈洪丽, 王琨, 苟浩然, 张一凡, 唐堂, 周航宇, 左恒愽. 页岩储层剪切滑移粗糙缝内支撑剂铺置实验研究 [J]. 油气藏评价与开发, 2025, 15(1): 131-141. |
[7] | 毛振强. 中高渗断块油藏提高采收率技术实践——以济阳坳陷东营凹陷纯47块为例 [J]. 油气藏评价与开发, 2024, 14(6): 918-924. |
[8] | 赵忠新, 李洪达, 颜艺灿, 任路. 河流相砂岩热储地热田开发利用关键技术——以渤海湾盆地南堡凹陷高尚堡-柳赞地热田为例 [J]. 油气藏评价与开发, 2024, 14(6): 857-863. |
[9] | 贾军红, 余光明, 李姝蔓, 谢珍, 彭荣, 汤勇. 低渗油藏注水井欠注问题主控因素分析——以鄂尔多斯盆地长8段油藏为例 [J]. 油气藏评价与开发, 2024, 14(6): 892-898. |
[10] | 朱浩楠, 曹成, 张烈辉, 赵玉龙, 彭先, 赵梓寒, 陈星宇. CO2驱气提高采收率机理及发展方向 [J]. 油气藏评价与开发, 2024, 14(6): 975-980. |
[11] | 廖凯, 张士诚, 谢勃勃. 页岩油体积压裂后合理焖井时间模拟研究 [J]. 油气藏评价与开发, 2024, 14(5): 749-755. |
[12] | 张益, 宁崇如, 陈亚舟, 姬玉龙, 赵立阳, 王爱方, 黄晶晶, 于凯怡. 致密油藏大排量注水吞吐技术及参数优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 727-733. |
[13] | 曹小朋, 刘海成, 李忠新, 陈先超, 江朋宇, 樊浩. 基于EDFM的页岩油水平井注水吞吐优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 734-740. |
[14] | 何发岐, 李俊鹿, 高一龙, 吴锦伟, 白兴盈, 高盾. 鄂尔多斯盆地西南缘断缝体油藏开发特征与潜力 [J]. 油气藏评价与开发, 2024, 14(5): 667-677. |
[15] | 高玉巧, 何希鹏, 程熊, 唐玄, 花彩霞, 昝灵, 张培先, 陈学武, 庞伊伟. 陆相咸化湖盆“低TOC”烃源岩高生烃效率探讨——以苏北盆地溱潼凹陷阜宁组二段泥页岩为例 [J]. 油气藏评价与开发, 2024, 14(5): 678-687. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 10
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 16
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|