油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (1): 52-63.doi: 10.13809/j.cnki.cn32-1825/te.2023.01.006
收稿日期:
2021-10-12
出版日期:
2023-02-26
发布日期:
2023-01-30
作者简介:
赵仁文(1997—),男,在读硕士研究生,从事非常规油气储层评价等方面研究。地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东)地球科学与技术学院,邮政编码:266580。E-mail:基金资助:
ZHAO Renwen1,2(),XIAO Dianshi1,2,LU Shuangfang1,2,ZHOU Nengwu1,2
Received:
2021-10-12
Online:
2023-02-26
Published:
2023-01-30
摘要:
我国陆相断陷盆地含气页岩发育广泛,以往主要作为气源岩研究,对其储集性及影响因素的研究较少,亟须开展相应研究来明确陆相断陷盆地页岩储层发育主控因素。选取松辽盆地徐家围子断陷沙河子组与四川盆地龙马溪组页岩,利用有机地化、全岩分析、扫描电镜、低温氮气吸附和核磁共振等实验,对比研究高—过熟陆相断陷盆地和海相含气页岩储层特征差异并探讨主控因素。研究表明:沙河子组页岩形成环境多样,有机质类型以Ⅲ型(腐殖型)为主,黏土矿物含量高,胶结石英发育,黏土相关孔和石英粒间孔为主要孔隙类型,比表面积小但孔径大,储层发育受压实作用、黏土矿物转化和煤层发育的控制;龙马溪组页岩形成于陆棚环境,有机质类型以I型(腐泥型)为主,有机质丰度高,生物成因石英含量高,有机孔和黏土相关孔为主要孔隙类型,有机质类型和成熟度主控孔隙发育。整体上,沙河子组页岩储层发育条件稍差于龙马溪组,但平原沼泽微相页岩紧邻煤层发育,自生胶结石英发育、伊蒙混层比例高,储层有机质丰度高、可压性好、孔体积和比表面积较大、孔隙发育较好,可作为潜在有利目标开展进一步评价研究。
中图分类号:
赵仁文,肖佃师,卢双舫,周能武. 高—过成熟陆相断陷盆地页岩与海相页岩储层特征对比——以徐家围子断陷沙河子组和四川盆地龙马溪组为例[J]. 油气藏评价与开发, 2023, 13(1): 52-63.
ZHAO Renwen,XIAO Dianshi,LU Shuangfang,ZHOU Nengwu. Comparison of reservoir characteristics between continental shale from faulted basin and marine shale under high-over mature stage: Taking Shahezi Formation in Xujiaweizi faulted basin and Longmaxi Formation in Sichuan Basin as an example[J]. Reservoir Evaluation and Development, 2023, 13(1): 52-63.
表1
样品选样信息、矿物组成及孔隙特征参数"
样品编号 | 深度(m) | 沉积环境 | 石英 (%) | 长石 (%) | 碳酸盐岩(%) | 黄铁矿 (%) | 黏土矿物(%) | 比表面积(m2/g) | 孔体积 (cm3/g) | 平均孔径(nm) | 有机质丰度 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
XS25-1 | 4 217.64 | 平原沼泽 | 47.91 | 5.27 | 0.88 | 0 | 45.94 | 3.353 | 0.010 | 12.0 | 1.37 |
XS25-2 | 4 218.54 | 平原沼泽 | 58.88 | 0 | 0.91 | 0 | 40.21 | 5.106 | 0.013 | 10.2 | 0.42 |
XS25-4 | 4 219.84 | 平原沼泽 | 34.67 | 16.15 | 0.69 | 0 | 48.49 | 2.752 | 0.010 | 13.8 | 0.69 |
XS25-5 | 4 269.37 | 平原沼泽 | 31.50 | 10.67 | 0 | 0 | 57.83 | 4.028 | 0.013 | 12.6 | 1.93 |
XS25-6 | 4 270.27 | 平原沼泽 | 32.93 | 7.70 | 0.68 | 0 | 58.69 | 4.746 | 0.016 | 13.1 | 1.17 |
XS25-8 | 4 271.87 | 平原沼泽 | 35.28 | 15.98 | 0.77 | 0 | 47.97 | 3.361 | 0.012 | 14.5 | 5.24 |
XS25-9 | 4 273.17 | 平原沼泽 | 26.95 | 8.94 | 0.62 | 0 | 63.17 | 3.840 | 0.017 | 17.4 | 0.66 |
XS25-12 | 4 274.87 | 平原沼泽 | 34.58 | 11.29 | 0 | 0 | 54.13 | 2.796 | 0.009 | 12.6 | 3.48 |
DS28-2 | 3 018.88 | 平原沼泽 | 41.13 | 15.96 | 1.52 | 0 | 41.39 | 6.464 | 0.020 | 12.1 | 0.74 |
DS28-9 | 3 021.58 | 平原沼泽 | 39.16 | 10.89 | 0 | 0 | 49.95 | 5.824 | 0.020 | 13.7 | 1.45 |
DS28-11 | 3 022.63 | 平原沼泽 | 39.39 | 14.02 | 0 | 0 | 46.59 | 5.832 | 0.019 | 12.9 | 1.44 |
DS28-13 | 3 023.58 | 平原沼泽 | 36.56 | 19.03 | 0 | 0 | 44.41 | 6.260 | 0.020 | 12.6 | 1.53 |
DS28-15 | 3 024.78 | 平原沼泽 | 28.35 | 17.95 | 0.33 | 0 | 53.37 | 5.611 | 0.018 | 12.7 | 0.81 |
DS28-24 | 3 060.69 | 平原沼泽 | 41.89 | 8.01 | 1.72 | 0 | 48.38 | 7.301 | 0.019 | 10.4 | 5.33 |
DS6-6 | 3 543.04 | 前缘 | 39.16 | 9.20 | 0 | 0.50 | 51.14 | 7.225 | 0.017 | 9.5 | 2.89 |
DS6-10 | 3 839.26 | 前缘 | 36.22 | 21.29 | 1.16 | 0.63 | 40.70 | 2.849 | 0.008 | 11.1 | 2.07 |
DS6-13 | 3 840.36 | 前缘 | 33.21 | 20.07 | 0 | 0 | 46.72 | 5.704 | 0.012 | 8.5 | 0.97 |
DS6-15 | 3 841.56 | 前缘 | 25.86 | 15.18 | 0 | 0 | 58.96 | 8.030 | 0.016 | 8.2 | 2.39 |
DS6-17 | 3 842.46 | 前缘 | 34.59 | 19.29 | 1.25 | 0 | 44.87 | 7.193 | 0.015 | 8.2 | 0.33 |
ShS5-13 | 3 879.65 | 前缘 | 28.24 | 30.52 | 0.76 | 0 | 40.48 | 4.010 | 0.009 | 8.8 | 1.87 |
ShS5-16 | 3 880.15 | 前缘 | 31.27 | 20.07 | 0 | 0 | 48.66 | 4.756 | 0.012 | 9.9 | 1.09 |
ShS5-17 | 3 882.75 | 前缘 | 37.79 | 24.78 | 3.17 | 0 | 34.26 | 3.068 | 0.008 | 10.0 | 2.51 |
FS12-2 | 3 885.28 | 前缘 | 23.66 | 33.80 | 4.69 | 0 | 37.85 | 4.561 | 0.012 | 10.9 | 0.74 |
FS12-4 | 3 886.98 | 前缘 | 36.66 | 28.56 | 0 | 0 | 34.78 | 4.187 | 0.011 | 10.7 | 0.98 |
FS12-7 | 3 888.88 | 前缘 | 27.37 | 27.40 | 0 | 0 | 45.23 | 2.734 | 0.008 | 11.9 | 2.05 |
ZS14-1 | 4 028.85 | 浅湖 | 32.53 | 5.46 | 5.90 | 0 | 56.11 | 5.626 | 0.011 | 7.9 | 1.02 |
ZS14-2 | 4 030.10 | 浅湖 | 31.38 | 5.45 | 5.23 | 0 | 57.94 | 6.834 | 0.013 | 7.8 | 1.16 |
ZS14-4 | 4 031.30 | 浅湖 | 32.97 | 25.10 | 1.08 | 0.53 | 40.32 | 2.832 | 0.009 | 13.1 | 1.73 |
ZS14-5 | 4 032.40 | 浅湖 | 32.18 | 7.83 | 9.52 | 0.56 | 49.91 | 7.298 | 0.012 | 6.7 | 1.67 |
ZS14-6 | 4 033.50 | 浅湖 | 28.81 | 5.48 | 3.34 | 0.25 | 62.12 | 6.361 | 0.012 | 7.3 | 1.45 |
ZS14-7 | 4 035.00 | 浅湖 | 31.91 | 9.97 | 1.96 | 0 | 56.16 | 6.816 | 0.012 | 7.0 | 1.22 |
FS12-20 | 4 095.48 | 浅湖 | 36.01 | 26.53 | 0 | 0 | 37.46 | 2.743 | 0.009 | 12.9 | 0.80 |
FS12-24 | 4 103.94 | 浅湖 | 38.01 | 30.67 | 0 | 0 | 31.32 | 2.558 | 0.008 | 11.8 | 0.67 |
PY1-1 | 2 157.78 | 深水陆棚 | 40.30 | 12.60 | 3.70 | 0.70 | 42.70 | 18.193 | 0.008 | 3.6 | 2.22 |
PY1-4 | 2 155.68 | 深水陆棚 | 27.90 | 5.60 | 3.00 | 5.70 | 57.80 | 8.433 | 0.003 | 4.3 | 3.56 |
PY1-5 | 2 152.89 | 深水陆棚 | 46.10 | 9.80 | 10.30 | 4.70 | 29.10 | 17.888 | 0.010 | 3.8 | 3.48 |
PY1-6 | 2 151.20 | 深水陆棚 | 55.60 | 7.10 | 9.30 | 4.70 | 23.30 | 18.270 | 0.010 | 3.9 | 3.63 |
PY1-11 | 2 138.83 | 浅水陆棚 | 38.50 | 19.60 | 7.50 | 2.80 | 31.60 | 11.320 | 0.006 | 4.6 | 1.52 |
PY1-13 | 2 134.77 | 浅水陆棚 | 79.10 | 2.80 | 1.90 | 0.90 | 15.30 | 8.868 | 0.005 | 4.5 | 1.88 |
PY1-20 | 2 114.85 | 浅水陆棚 | 37.90 | 20.30 | 10.90 | 2.00 | 28.90 | 8.522 | 0.007 | 5.2 | 1.40 |
PY1-22 | 2 106.35 | 浅水陆棚 | 49.60 | 12.90 | 3.90 | 1.50 | 32.10 | 9.848 | 0.006 | 4.3 | 0.90 |
LY1-4 | 2 832.33 | 深水陆棚 | 70.90 | 4.40 | 5.40 | 3.60 | 15.70 | 25.074 | 0.023 | 4.6 | 5.63 |
LY1-5 | 2 830.93 | 深水陆棚 | 61.80 | 7.50 | 4.90 | 4.00 | 21.80 | 29.425 | 0.020 | 3.8 | 6.46 |
LY1-6 | 2 828.68 | 深水陆棚 | 55.80 | 8.70 | 8.00 | 4.40 | 23.10 | 24.564 | 0.015 | 4.1 | 4.87 |
LY1-9 | 2 824.42 | 深水陆棚 | 58.60 | 6.50 | 8.70 | 4.40 | 21.80 | 24.558 | 0.015 | 3.9 | 5.04 |
LY1-13 | 2 819.13 | 深水陆棚 | 56.00 | 7.70 | 9.90 | 4.00 | 22.40 | 21.290 | 0.012 | 4.0 | 4.60 |
LY1-14 | 2 817.70 | 深水陆棚 | 62.80 | 6.30 | 7.10 | 3.20 | 20.60 | 24.152 | 0.015 | 4.1 | 4.96 |
LY1-16 | 2 811.65 | 深水陆棚 | 46.60 | 12.80 | 5.80 | 4.70 | 30.10 | 21.671 | 0.013 | 3.9 | 3.93 |
LY1-19 | 2 794.40 | 浅水陆棚 | 33.80 | 7.20 | 6.40 | 3.80 | 48.80 | 12.172 | 0.007 | 4.4 | 1.38 |
[1] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. |
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Characteristics, challenges and prospects of shale gas in China(I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. | |
[2] | 李建忠, 董大忠, 陈更生, 等. 中国页岩气资源前景与战略地位[J]. 天然气工业, 2009, 29(5): 11-16. |
LI Jianzhong, DONG Dazhong, CHEN Gengsheng, et al. Prospects and strategic position of shale gas resources in China[J]. Natural Gas Industry, 2009, 29(5): 11-16. | |
[3] | 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12): 1-14. |
HE Xipeng, HE Guisong, GAO Yuqiao, et al. Geological characteristics and enrichment and high yield of atmospheric shale gas in the transition zone of Southeastern Chongqing basin margin[J]. Natural gas industry, 2018, 38(12): 1-14. | |
[4] | 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80. |
ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Shale gas exploration fields and development directions in China[J]. Natural Gas Industry, 2021, 41(8): 69-80. | |
[5] | HE Taohua, LU Shuangfang, LI Wenhao, et al. Effect of salinity on source rock formation and its control on the oil content in shales in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin, Central China[J]. Energy & Fuels, 2018, 32(6): 698-707. |
[6] | 孙莎莎, 董大忠, 李育聪, 等. 四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J]. 石油与天然气地质, 2021, 42(1): 124-135. |
SUN Shasha, DONG Dazhong, LI Yucong, et al. Oil and gas geological characteristics and reservoir forming control factors of continental shale in Da'anzhai member of Jurassic Ziliujing formation in Sichuan Basin[J]. Oil and Gas Geology, 2021, 42(1): 124-135. | |
[7] | 郭少斌, 付娟娟, 高丹, 等. 中国海陆交互相页岩气研究现状与展望[J]. 石油实验地质, 2015, 37(5): 535-540. |
GUO Shaobin, FU Juanjuan, GAO Dan, et al. Current status and outlook of shale gas research in the intersection of sea and land in China[J]. Petroleum Experimental Geology, 2015, 37(5): 535-540. | |
[8] | 郭旭升, 胡东风, 刘若冰, 等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10): 11-18. |
GUO Xusheng, HU Dongfeng, LIU Ruobing, et al. Geological conditions and exploration potential of Permian marine continental transitional facies shale gas in Sichuan Basin[J]. Natural gas industry, 2018, 38(10): 11-18. | |
[9] | 罗鹏, 吉利明. 陆相页岩气储层特征与潜力评价[J]. 天然气地球科学, 2013, 24(5): 1060-1068. |
LUO Peng, JI Liming. Characteristics and potential evaluation of continental shale gas reservoir[J]. Natural Gas Geoscience, 2013, 24(5): 1060-1068. | |
[10] |
宋岩, 高凤琳, 唐相路, 等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(12): 1501-1512.
doi: 10.7623/syxb202012005 |
SONG Yan, GAO Fenglin, TANG Xianglu, et al. Factors influencing the difference in pore structure between marine and continental shale reservoirs[J]. Journal of Petroleum, 2020, 41(12): 1501-1512.
doi: 10.7623/syxb202012005 |
|
[11] | 吕鹏佶, 柳成志, 颜康, 等. 松辽盆地徐家围子断陷沙河子组地震相研究[J]. 地质与资源, 2014, 23(4): 330-334. |
LYU Pengji, LIU Chengzhi, YAN Kang, et al. Study on seismic facies of Shahezi Formation in Xujiaweizi fault depression of Songliao Basin[J]. Geology and Resources, 2014, 23(4): 330-334. | |
[12] | 陈海峰, 王凤启, 王民. 徐家围子断陷沙河子组致密砂砾岩气藏特征与资源潜力[J]. 中南大学学报(自然科学版), 2018, 49(1): 141-149. |
CHEN Haifeng, WANG Fengqi, WANG Min. Characteristics and resource potential of tight Sandy Conglomerate gas reservoir in Shahezi Formation of Xujiaweizi fault depression[J]. Journal of Central South University(Science and Technology), 2018, 49(1): 141-149. | |
[13] | 张春明, 张维生, 郭英海. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘, 2012, 19(1): 136-145. |
ZHANG Chunming, ZHANG Weisheng, GUO Yinghai. Sedimentary environment of Longmaxi formation and its influence on source rocks in Southeast Sichuan Northern Guizhou[J]. Earth Science Frontiers, 2012, 19(1): 136-145. | |
[14] |
张海涛, 张颖, 何希鹏, 等. 渝东南武隆地区构造作用对页岩气形成与保存的影响[J]. 中国石油勘探, 2018, 23(5): 47-56.
doi: 10.3969/j.issn.1672-7703.2018.05.006 |
ZHANG Haitao, ZHANG Ying, HE Xipeng, et al. Influence of tectonism on shale gas formation and preservation in Wulong area,Southeast Chongqing[J]. China Petroleum Exploration, 2018, 23(5): 47-56.
doi: 10.3969/j.issn.1672-7703.2018.05.006 |
|
[15] | 郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5): 837-845. |
GUO Tonglou, JIANG Shu, ZHANG Peixian, et al. Exploration and development progress and research direction of atmospheric pressure shale gas around Sichuan Basin[J]. Petroleum Experimental Geology, 2020, 42(5): 837-845. | |
[16] | 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. |
HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Preservation conditions and main controlling factors of marine shale gas in the southeast margin of Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. | |
[17] | 秦建中, 申宝剑, 陶国亮, 等. 优质烃源岩成烃生物与生烃能力动态评价[J]. 石油实验地质, 2014, 36(4): 465-472. |
QIN Jianzhong, SHEN Baojian, TAO Guoliang, et al. Dynamic evaluation of hydrocarbon generating organisms and hydrocarbon generating capacity of high-quality source rocks[J]. Petroleum Geology and Experiment, 2014, 36(4): 465-472. | |
[18] |
CHEN S B, ZHU Y M, WANG H Y, et al. Shale gas reservoir characterisation; A typical case in the southern Sichuan Basin of China[J]. Energy, 2011, 36(11): 6609-6616.
doi: 10.1016/j.energy.2011.09.001 |
[19] | 刘树根, 马文辛, JANSA Luba, 等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011, 27(8): 2239-2252. |
LIU Shugen, MA Wenxin, JANSA Luba, et al. Shale reservoir characteristics of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252. | |
[20] | 王民, 孙业峰, 王文广, 等. 松辽盆地北部徐家围子断陷深层烃源岩生气特征及天然气资源潜力[J]. 天然气地球科学, 2014, 25(7): 1011-1018. |
WANG Min, SUN Yefeng, WANG Wenguang, et al. Gas characteristics and natural gas resource potential of deep hydrocarbon source rocks in the Xujiaweizi fault trap in northern Songliao Basin[J]. Natural Gas Geoscience, 2014, 25(7): 1011-1018. | |
[21] |
JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mis-sissippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG bulletin, 2007, 91(4): 475-499.
doi: 10.1306/12190606068 |
[22] | 祝海华, 钟大康, 姚泾利. 等. 碱性环境成岩作用及对储集层孔隙的影响——以鄂尔多斯盆地长7段致密砂岩为例[J]. 石油勘探与开发, 2015, 42(1): 51-59. |
ZHU Haihua, ZHONG Dakang, YAO Jingli, et al. Diagenesis in alkaline environment and its influence on reservoir porosity--Taking the tight sandstone of Chang 7 member in Ordos Basin as an example[J]. Petroleum Exploration and Development, 2015, 42(1): 51-59. | |
[23] |
聂海宽, 金之钧, 马鑫, 等. 四川盆地及邻区上奥陶统五峰组—下志留统龙马溪组底部笔石带及沉积特征[J]. 石油学报, 2017, 38(2): 160-174.
doi: 10.7623/syxb201702004 |
NIE Haikuan, JIN Zhijun, MA Xin, et al. Graptolite belt and sedimentary characteristics at the bottom of Wufeng Formation of Upper Ordovician and Longmaxi formation of Lower Silurian in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2017, 38(2): 160-174.
doi: 10.7623/syxb201702004 |
|
[24] | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. |
ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Study on the genesis of quartz in gas bearing shale of Wufeng Formation Longmaxi formation in Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. | |
[25] | 张大智, 初丽兰, 周翔, 等. 松辽盆地北部徐家围子断陷沙河子组致密气储层成岩作用与成岩相特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 22-34. |
ZHANG Dazhi, CHU Lilan, ZHOU Xiang, et al. Diagenesis and diagenetic facies characteristics of tight gas reservoir in Shahezi Formation of Xujiaweizi fault depression in northern Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 22-34. | |
[26] | 久博, 黄文辉, 王雅婷, 等. 鄂尔多斯盆地南部煤系致密砂岩胶结作用对储层物性的影响[J]. 煤炭学报, 2018, 43(9): 2543-2552. |
JIU Bo, HUANG Wenhui, WANG Yating, et al. Effect of cementation of tight sandstone in coal measures in southern Ordos Basin on reservoir physical properties[J]. Journal of China Coal Society, 2018, 43(9): 2543-2552. | |
[27] | 王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486. |
WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenesis of siliceous shale rich in organic matter in Sichuan Basin and its significance to shale gas development[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486. | |
[28] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG bulletin, 2012, 96(6): 1071-1098.
doi: 10.1306/08171111061 |
[29] |
YANG R, HE S, YI J Z, et al. Nano-scale pore structure and fractal dimension of organ-ic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin; Investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology, 2016, 70: 27-45.
doi: 10.1016/j.marpetgeo.2015.11.019 |
[30] | 李志清, 孙洋, 胡瑞林, 等. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 2018, 26(3): 758-766. |
LI Zhiqing, SUN Yang, HU Ruilin, et al. Study on nano pore structure characteristics of Shale Based on nuclear magnetic resonance[J]. Journal of Engineering Geology, 2018, 26(3): 758-766. | |
[31] |
EVERETT D H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry[J]. Pure and Applied Chemistry, 1972, 31(4): 577-638.
doi: 10.1351/pac197231040577 |
[32] |
姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2): 126-134.
doi: 10.13745/j.esf.2016.02.013 |
JIANG Zhenxue, TANG Xianglu, LI Zhuo, et al. Full aperture characterization of pore structure of shale of Longmaxi formation in Southeast Sichuan and its control on gas bearing property[J]. Earth Science Frontiers, 2016, 23(2): 126-134.
doi: 10.13745/j.esf.2016.02.013 |
|
[33] |
MILAD S, MANIKA P. Effect of mineralogy on nuclear magnetic resonance surface relaxivity: A case study of Middle Bakken and Three Forks formations[J]. Fuel, 2015, 161: 197-206.
doi: 10.1016/j.fuel.2015.08.014 |
[34] | CHEN F W, ZHENG Q, DING X, et al. Pore size distributions contributed by OM, clay and other minerals in over-mature marine shale: A case study of the Longmaxi shale from Southeast Chongqing, China[J]. Marine and Petroleum Geology, 2020, 122: 104679. |
[35] | 曹涛涛, 宋之光. 页岩有机质特征对有机孔发育及储层的影响[J]. 特种油气藏, 2016, 23(4): 7-13. |
CAO Taotao, SONG Zhiguang. Influence of shale organic matter characteristics on organic pore development and reservoir[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 7-13. | |
[36] | 仰云峰, 鲍芳, 腾格尔, 等. 四川盆地不同成熟度下志留统龙马溪组页岩有机孔特征[J]. 石油实验地质, 2020, 42(3): 387-397. |
YANG Yunfeng, BAO Fang, BORJIGIN Tenger, et al. Characteristics of organic pores in shale of Lower Silurian Longmaxi formation with different maturity in Sichuan Basin[J]. Petroleum Geology and Experiment, 2020, 42(3): 387-397. | |
[37] | 罗小平, 吴飘, 赵建红, 等. 富有机质泥页岩有机质孔隙研究进展[J]. 成都理工大学学报(自然科学版), 2015, 42(1): 50-59. |
LUO Xiaoping, WU Piao, ZHAO Jianhong, et al. Progress in the study of organic matter pores in organic matter-rich mud shale[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2015, 42(1): 50-59. | |
[38] | 谢昭涵, 罗静爽, 刘中亮, 等. 松辽盆地徐家围子断陷的断裂复活演化特征及控藏作用[J]. 地质论评, 2015, 61(6): 1332-1346. |
XIE Zhaohan, LUO Jingshuang, LIU Zhongliang, et al. Fault reactivation evolution characteristics and reservoir control of Xujiaweizi fault depression in Songliao Basin[J]. Geological Review, 2015, 61(6): 1332-1346. | |
[39] | 侯中帅, 陈世悦. 东营凹陷沙四段上亚段—沙三段下亚段泥页岩成岩演化及其对储层发育的影响[J]. 油气地质与采收率, 2019, 16(1): 119-128. |
HOU Zhongshuai, CHEN Shiyue. Diagenetic evolution of shale from upper member of Es4 to lower member of Es3 in Dongying depression and its impact on reservoir development[J]. Petroleum Geology and Recovery Efficiency, 2019, 16(1): 119-128. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[3] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[4] | 侯大力, 韩鑫, 唐洪明, 郭建春, 龚凤鸣, 孙雷, 强贤宇. 龙马溪组页岩干酪根表征初探及干酪根吸附特征研究 [J]. 油气藏评价与开发, 2023, 13(5): 636-646. |
[5] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[6] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[7] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[8] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[9] | 林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究 [J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
[10] | 刘洪林,周尚文,李晓波. PCA-OPLS联合法快速评价页岩气井储量动用程度 [J]. 油气藏评价与开发, 2023, 13(4): 474-483. |
[11] | 卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究 [J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
[12] | 邱小雪,钟光海,李贤胜,陈猛,凌玮桐. 不同井斜页岩气水平井流动特征的CFD模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 340-347. |
[13] | 聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法 [J]. 油气藏评价与开发, 2023, 13(3): 358-367. |
[14] | 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例 [J]. 油气藏评价与开发, 2023, 13(2): 240-246. |
[15] | 李颖,李茂茂,李海涛,于皓,张启辉,罗红文. 水相渗吸对页岩储层的物化作用机理研究 [J]. 油气藏评价与开发, 2023, 13(1): 64-73. |
|