油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (3): 305-312.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.005
王建猛1(),陈杰2,吉礼东1,刘荣和2,张骞3,黄东杰3,颜平1
收稿日期:
2022-12-08
出版日期:
2023-06-26
发布日期:
2023-06-26
作者简介:
王建猛(1999—),男,在读硕士研究生,主要从事油气藏开发方面的研究。地址:四川省成都市成华区二仙桥东三路1号,邮政编码:610059。E-mail:基金资助:
WANG Jianmeng1(),CHEN Jie2,JI Lidong1,LIU Ronghe2,ZHANG Qian3,HUANG Dongjie3,YAN Ping1
Received:
2022-12-08
Online:
2023-06-26
Published:
2023-06-26
摘要:
在废弃油气藏中进行CO2埋存,能够减少温室气体在大气中的直接排放量,是减缓温室效应的有效途径之一。改进常规的气液相平衡理论,应用热力学状态方程研究CO2-烃-地层水体系,对揭示CO2地下埋存的溶解机理具有十分重要的意义。总结了热力学状态方程对CO2-烃-地层水体系相平衡计算方面的国内外研究进展,指出其实际应用中的不足,分析了其发展趋势,包括:应进一步研究适用于非理想体系的状态方程和混合规则,准确预测该体系热力学性质变化规律;拓展研究体系的地层水离子差异,使之与真实CO2埋存条件相符合;将CO2中相态变化的物理过程与地层水中矿物溶解析出的化学过程耦合。
中图分类号:
王建猛,陈杰,吉礼东,刘荣和,张骞,黄东杰,颜平. CO2埋存中的状态方程研究进展与展望[J]. 油气藏评价与开发, 2023, 13(3): 305-312.
WANG Jianmeng,CHEN Jie,JI Lidong,LIU Ronghe,ZHANG Qian,HUANG Dongjie,YAN Ping. Research progress and prospect of state equation in CO2 storage[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 305-312.
表2
不同状态方程相平衡计算情况"
状态方程 | 温度/K | 压力/MPa | 研究体系 | 平均相对偏差/ % | |||
---|---|---|---|---|---|---|---|
气液相平衡 | 气相密度 | 液相密度 | |||||
统计缔合 流体理论 状态方程 | SAFT[ | 283~573 | 0.1~60.0 | CO2, H2O | |||
SAFT[ | 414~421 | 0.1~60.0 | CO2, H2O | ||||
SAFT1[ | 303~373 | 6.0~30.0 | CO2, SO2, H2O | 2.70 | 0.29 | ||
SAFT-LJ[ | 273~627 | 0.1~154.2 | H2O, CH4, C2H6, C3H8, nC4H10 | 2.80 | |||
SAFT-LJ+RG[ | 270~301 | 5.7~8.5 | CO2, CH4, H2O | 7.47、13.70、16.60 | |||
SAFT-γ Mie[ | 283~473 | 0.1~68.0 | CO2, nC7H16 | 2.0 | 4.00 | ||
PC-SAFT[ | 263~373 | 0.1~30.0 | CO2, H2O, SO2 | <3.10 | 0.8 | 0.80 | |
SAFT1-RPM[ | 285~473 | 0~20.0 | CO2, H2O, NaCl | <0.50 | 0.28 | ||
SAFT-LJ[ | 273~573 | 0~100.0 | CO2, H2O, NaCl | 3.30 | 0.60 | ||
PC-SAFT[ | 273.25~303.05 | 0.1~22.0 | CO2, N2, H2O, NaCl | ||||
立方型 状态方程 | SRK-HV[ | 245~383 | 0.1~350.0 | CO2, CH4, H2O | 3.00~9.30 | ||
PR-HV[ | 308~408 | 0.1~50.0 | CO2, H2O, NaCl | 2.69 | |||
PR-HV[ | 303~523 | 0.1~50.0 | CO2, CH4, H2O, NaCl | 5.11 | |||
PR-HV[ | 273~550 | 0~80.0 | CO2, H2O, NaCl, KCl, CaCl2, MgCl2 | 0.15 | |||
PRSV-SW[ | 273~623 | 0.1~200.0 | CO2, CH4, H2O | 6.80~7.40 | |||
SRK-Prausnitz[ | 313~393 | 5~20.0 | CO2, H2O | 3.29 | |||
PR-Wilson[ | 223~598 | 0.6~100.0 | CO2, H2O | ||||
PR-VT[ | 310.95~449.85 | 4.82~18.17 | CO2, CH4, H2S, H2O, NaCl | ||||
维里型 状态方程 | Duan(1992)[ | 323~1 273 | 0.1~100.0 | CO2, CH4, H2O | 15.00~20.00 | ||
Duan(2003)[ | 273~533 | 0.1~200.0 | CO2, H2O, NaCl | 约7.00 | |||
Duan(2006)[ | 273~533 | 0.1~200.0 | CO2, H2O, Na+, K+, Ca2+, Mg2+, Cl- | 约3.00 | |||
Duan(2008)[ | 273~523 | 0.1~100.0 | CO2, H2O, NaCl, CaCO3 | <5.00 | |||
多类型 结合状态 方程 | PR-Henry模型[ | 283~363 | 0~50.0 | CO2, N2, 碳氢化合物, 盐水 | 2.24 | ||
e-PR-CPA模型[ | 322.97~373.38 | 3~22.9 | CO2, H2O, NaCl | 4.00 | |||
PR-CPA模型[ | 297~323.15 | 0~40.0 | CO2,H2O,NaCl,KCl,CaCl2,MgCl2,Na2SO4 | ||||
SRK-CPA模型[ | 308~473 | 0.1~480.0 | CO2, H2O | ||||
qCPA模型[ | 213~582 | 0.3~20.0 | CO2, 碳氢化合物 |
表3
不同类型状态方程特点及不足"
类型 | 特点 | 不足 |
---|---|---|
统计缔合 流体理论 状态方程 | ①将热力学性质和分子间的物理作用力相结合,更准确地描述复杂流体; ②可用于简单离子溶液相平衡计算; ③在CO2-烃-地层水体系相平衡计算方面有很大发展空间 | ①多应用于CO2、H2O、烃等二元混合物的相平衡计算,对于多元混合物的相平衡计算研究较少; ②考虑的盐溶液多为NaCl,没有拓展到实际地层中其他盐成分; ③模型较为复杂,计算量大,不易与地层水中矿物溶解沉淀的化学反应过程耦合 |
立方型 状态方程 | ①通过改进混合规则和相互作用参数,使其能够定量描述高度非理想混合体系的气液相平衡; ②计算相对简单,广泛应用于工程实际中 | ①存在适用温度压力范围,对适用范围外的预测精度较差; ②状态方程和混合规则参数受温度变化影响,需要精准的实验数据进行拟合; ③对离子溶液体系相平衡研究不充分,研究离子种类不丰富 |
维里型 状态方程 | ①维里状态方程计算精度较高; ②多应用于烃类等单组分 | ①不适用于含CO2、烃类分子和地层水多元体系的相平衡计算; ②形式复杂,参数较多,难以推广到实际应用 |
多类型结合 状态方程 | ①将不同理论及模型的优点相结合,提高了研究体系的相平衡预测精度; ②近些年研究充分,有较大发展潜力 | 模型较为复杂,计算量较大 |
[1] | 范秦楚, 阮玉蛟, 周军. 碳达峰碳中和目标下国内天然气净化厂运行现状与展望[J]. 石油与天然气化工, 2023, 52(1): 25-31. |
FAN Qinchu, RUAN Yujiao, ZHOU Jun. Current status and prospect of domestic natural gas purification plants under the target of carbon peaking and carbon neutralization[J]. Chemical Engineering of Oil & Gas, 2023, 52(1): 25-31. | |
[2] | 周微, 纪文, 李佳忆, 等. 天然气净化厂余压发电项目温室气体减排潜力研究[J]. 石油与天然气化工, 2023, 52(1): 50-53. |
ZHOU Wei, JI Wen, LI Jiayi, et al. Study on the potential of greenhouse gas emission reduction of natural gas purification plant residual pressure power generation project[J]. Chemical Engineering of Oil & Gas, 2023, 52(1): 50-53. | |
[3] | 张路. 基于缔合理论的CO2-烃-地层水体系热力学研究[D]. 成都: 西南石油大学, 2018. |
ZHANG Lu. Study on the thermodynamics of CO2-hydrocarbon-formation water system by using the association theory[D]. Chengdu: Southwest Petroleum University, 2018. | |
[4] | 刘树阳, 张毅, 宋永臣, 等. CO2-CH4体系热力学性质(PVTx)研究进展[J]. 中国科学: 技术科学, 2019, 49(12): 1429-1441. |
LIU Shuyang, ZHANG Yi, SONG Yongchen, et al. Research progress on the thermodynamic properties(PVTx)of a CO2-CH4 mixture system[J]. Scientia Sinica(Technologica), 2019, 49(12): 1429-1441. | |
[5] |
CHAPMAN W G, GUBBINS K E, JACKSON G, et al. New reference equation of state for associating liquids[J]. Industrial & Engineering Chemistry Research, 1990, 29(8): 1709-1721.
doi: 10.1021/ie00104a021 |
[6] |
MÜLLER E A, GUBBINS K E. Molecular-based equations of state for associating fluids: A review of SAFT and related approaches[J]. Industrial & Engineering Chemistry Research, 2001, 40(10): 2193-2211.
doi: 10.1021/ie000773w |
[7] |
ISLAM A W, CARLSON E S. Application of SAFT equation for CO2+H2O phase equilibrium calculations over a wide temperature and pressure range[J]. Fluid Phase Equilibria, 2012, 321: 17-24.
doi: 10.1016/j.fluid.2012.02.016 |
[8] | 向晶. 高含CO2天然气与水体系相平衡预测模型研究[D]. 成都: 西南石油大学, 2018. |
XIANG Jing. Study on the phase equilibrium prediction model of high CO2 natural gas and water system[D]. Chengdu: Southwest Petroleum University, 2018. | |
[9] |
MIRI R, AAGAARD P, HELLEVANG H. Examination of CO2-SO2 solubility in water by SAFT1. Implications for CO2 transport and storage[J]. Journal of Physical Chemistry B, 2014, 118(34): 10214-10223.
doi: 10.1021/jp505562j |
[10] |
SUN R, LAI S C, DUBESSY J. Calculation of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part Ⅲ. Extension to water-light hydrocarbons systems[J]. Geochimica et Cosmochimica Acta, 2014, 125: 504-518.
doi: 10.1016/j.gca.2013.10.027 |
[11] | 李雅婧. CO2(CH4-H2O)体系在近临界区的气液相平衡和PVTx性质的精确计算及应用[D]. 西安: 西北大学, 2020. |
LI Yajing. Thermodynamic models for accurate calculations and applications of vapor-liquid equilibrium and PVTx properties of CO2(CH4-H2O) system inside the critical region[D]. Xi'an: Northwest University, 2020. | |
[12] |
SANCHEZ-VICENTE Y, TAY W J, AL GHAFRI S Z, et al. Thermodynamics of carbon dioxide-hydrocarbon systems[J]. Applied Energy, 2018, 220: 629-642.
doi: 10.1016/j.apenergy.2018.03.136 |
[13] |
GIMENO B, MARTÍNEZ-CASASNOVAS S, VELASCO I, et al. Thermodynamic properties of CO2+SO2+CH4 mixtures over wide ranges of temperature and pressure. Evaluation of CO2/SO2 co-capture in presence of CH4 for CCS[J]. Fuel, 2019, 255: 115800.
doi: 10.1016/j.fuel.2019.115800 |
[14] |
JI X Y, TAN S P, ADIDHARMA H, et al. SAFT1-RPM approximation extended to phase equilibria and densities of CO2-H2O and CO2-H2O-NaCl systems[J]. Industrial & Engineering Chemistry Research, 2005, 44(22): 8419-8427.
doi: 10.1021/ie050725h |
[15] |
SUN R, DUBESSY J. Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part Ⅱ: Application to H2O-NaCl and CO2-H2O-NaCl system[J]. Geochimica et Cosmochimica Acta, 2012, 88: 130-145.
doi: 10.1016/j.gca.2012.04.025 |
[16] |
HASSANPOURYOUZBAND A, FARAHANI M V, YANG J H, et al. Solubility of flue gas or carbon dioxide-nitrogen gas mixtures in water and aqueous solutions of salts: Experimental measurement and thermodynamic modeling[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3377-3394.
doi: 10.1021/acs.iecr.8b04352 |
[17] |
JOHANNES D, WALLS V D. Reprint of: The equation of state for gases and liquids[J]. The Journal of Supercritical Fluids, 2010, 55(2): 403-414.
doi: 10.1016/j.supflu.2010.11.001 |
[18] |
SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203.
doi: 10.1016/0009-2509(72)80096-4 |
[19] | PENG D Y, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
[20] |
SØRENSEN H, PEDERSEN K S, CHRISTENSEN P L. Modeling of gas solubility in brine[J]. Organic Geochemistry, 2002, 33(6): 635-642.
doi: 10.1016/S0146-6380(02)00022-0 |
[21] | 侯大力, 罗平亚, 王长权, 等. 高温高压下CO2在水中溶解度实验及理论模型[J]. 吉林大学学报(地球科学版), 2015, 45(2): 564-572. |
HOU Dali, LUO Pingya, WANG Changquan, et al. Experimental research and theoretical model for CO2 solubility in water under high temperature and high pressure[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 564-572. | |
[22] | 李靖. 高温高压高含CO2天然气在地层水中溶解度理论研究[D]. 成都: 西南石油大学, 2017. |
LI Jing. Theoretical study on solubility of high CO2 content natural gas in formation water at high temperature and high pressure[D]. Chengdu: Southwest Petroleum University, 2017. | |
[23] | SUN Z T, LI H Z. Phase behavior modeling for carbon dioxide/brine mixtures using PR EOS and Huron-Vidal mixing rule[C]// Paper presented at the ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering, Hamburg, Germany, June 2022. |
[24] |
ZHAO H N, LVOV S N. Phase behavior of the CO2-H2O system at temperatures of 273-623 K and pressures of 0.1-200 MPa using Peng-Robinson-Stryjek-Vera equation of state with a modified Wong-Sandler mixing rule: An extension to the CO2-CH4-H2O system[J]. Fluid Phase Equilibria, 2016, 417: 96-108.
doi: 10.1016/j.fluid.2016.02.027 |
[25] |
YANG F F, LIU Q, DUAN Y Y, et al. On the temperature dependence of the α function in the cubic equation of state[J]. Chemical Engineering Science, 2018, 192: 565-575.
doi: 10.1016/j.ces.2018.08.014 |
[26] | 张雪丽. 中国北方主要盆地地下咸水中CO2溶解度研究[D]. 北京: 中国地质大学(北京), 2016. |
ZHANG Xueli. Measurment and Modeling of CO2 solubility in formation brine in major basins in north China[D]. Beijing: China University of Geosciences(Beijing), 2016. | |
[27] |
LASALA S, CHIESA P, PRIVAT R, et al. Modeling the thermodynamics of fluids treated by CO2 capture processes with Peng-Robinson + residual Helmholtz energy-based mixing rules[J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 2259-2276.
doi: 10.1021/acs.iecr.6b04190 |
[28] | ISABELA T B, GUIRARDELLO R. Thermodynamic calculation for the formation of methane and carbon dioxide hydrates[J]. Chemical Engineering Transactions, 2022, 92: 379-384. |
[29] | LI Z D, WANAT E, LUN L, et al. Fluid property model for carbon capture and storage by volume-translated Peng-Robinson equation of state and Lohrenz-Bray-Clark viscosity correlation[C]// Paper SPE-212584-MS presented at the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, January 2023. |
[30] | 韩晓红, 陈光明, 王勤, 等. 状态方程研究进展[J]. 天然气化工(C1 化学与化工), 2005, 30(5): 52-61. |
HAN Xiaohong, CHEN Guangming, WANG Qing, et al. Research progress of equation of state[J]. Natural Gas Chemical Industry, 2005, 30(5): 52-61. | |
[31] |
DUAN Z H, MØLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1 000 ℃ and 0 to 8 000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2605-2617.
doi: 10.1016/0016-7037(92)90347-L |
[32] |
DUAN Z H, MØLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O system: Ⅱ. Mixtures from 50 to 1 000 ℃ and 0 to 1 000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2619-2631.
doi: 10.1016/0016-7037(92)90348-M |
[33] |
DUAN Z H, SUN R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2 000 bar[J]. Chemical Geology, 2003, 193(3-4): 257-271.
doi: 10.1016/S0009-2541(02)00263-2 |
[34] |
DUAN Z H, SUN R, ZHU C, et al. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-[J]. Marine Chemistry, 2006, 98(2): 131-139.
doi: 10.1016/j.marchem.2005.09.001 |
[35] |
DUAN Z H, LI D. Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250 ℃, 1 to 1 000 bar with NaCl concentrations up to saturation of halite[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 5128-5145.
doi: 10.1016/j.gca.2008.07.025 |
[36] |
LIU G F, HE L Y, FAN Z Q, et al. Investigation of gas solubility and its effects on natural gas reserve and production in tight formations[J]. Fuel, 2021, 295(6): 120507.
doi: 10.1016/j.fuel.2021.120507 |
[37] |
CHABAB S, THÉVENEAU P, CORVISIER J, et al. Thermodynamic study of the CO2-H2O-NaCl system: Measurements of CO2 solubility and modeling of phase equilibria using Soreide and Whitson, electrolyte CPA and SIT models[J]. International Journal of Greenhouse Gas Control, 2019, 91: 102825.
doi: 10.1016/j.ijggc.2019.102825 |
[38] |
LI Y T, QIAO Z H, SUN S Y, et al. Thermodynamic modeling of CO2 solubility in saline water using NVT flash with the cubic-Plus-association equation of state[J]. Fluid Phase Equilibria, 2020, 520(1): 112657.
doi: 10.1016/j.fluid.2020.112657 |
[39] | 涂汉敏, 郭平, 贾钠, 等. CPA方程对CO2-水体系相态研究[J]. 岩性油气藏, 2018, 30(4): 113-119. |
TU Hanmin, GUO Ping, JIA Na, et al. Calculation of phase behavior for CO2-water mixtures using CPA EoS[J]. Lithologic Reservoirs, 2018, 30(4): 113-119. | |
[40] |
BJØRNER M G, KONTOGEORGIS G M. Modeling derivative properties and binary mixtures with CO2 using the CPA and the quadrupolar CPA equations of state[J]. Fluid Phase Equilibria, 2016, 408: 151-169.
doi: 10.1016/j.fluid.2015.08.011 |
[41] | 王珺瑶, 张月, 邓帅, 等. CO2混合物热物性在 CCS 研究中的作用: 实验数据, 理论模型和典型应用[J]. 化工进展, 2019, 38(3): 1244-1258. |
WANG Junyao, ZHANG Yue, DENG Shuai, et al. Role of thermodynamic properties of CO2 mixtures in CCS: Data, models and typical applications[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1244-1258. | |
[42] | 税蕾蕾, 郭来源, 徐新德, 等. 莺歌海盆地乐东10区CO2包裹体特征及其流体充注史[J]. 石油实验地质, 2021, 43(5): 835-843. |
SHUI Leilei, GUO Laiyuan, XU Xinde, et al. Fluid charging history in Ledong 10 area, Yinggehai Basin, revealed by CO2 inclusion characteristics[J]. Petroleum Geology & Experiment, 2021, 43(5): 835-843. | |
[43] | 李超, 陈祖华, 胡世莱, 等. 新疆油田JL区块特低渗透油藏CO2-化学剂复合吞吐技术应用研究[J]. 油气地质与采收率, 2021, 28(3): 134-141. |
LI Chao, CHEN Zuhua, HU Shilai, et al. Application of CO2-chemical agent composite huff and puff in extra-low permeability reservoir of Block JL in Xinjiang Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3): 134-141. | |
[44] | 郭永伟, 闫方平, 王晶, 等. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161. |
GUO Yongwei, YAN Fangping, WANG Jing, et al. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs[J]. Lithologic Reservoirs, 2021, 33(3): 153-161. | |
[45] |
AASEN A, HAMMER M, SKAUGEN G, et al. Thermodynamic models to accurately describe the PVTxy-behavior of water/carbon dioxide mixtures[J]. Fluid Phase Equilibria, 2017, 442: 125-139.
doi: 10.1016/j.fluid.2017.02.006 |
[46] |
PEREZ A G, COQUELET C, PARICAUD P, et al. Comparative study of vapour-liquid equilibrium and density modelling of mixtures related to carbon capture and storage with the SRK, PR, PC-SAFT and SAFT-VR Mie equations of state for industrial uses[J]. Fluid Phase Equilibria, 2017, 440: 19-35.
doi: 10.1016/j.fluid.2017.02.018 |
[1] | 杨宇,徐启林,刘荣和,黄东杰,颜平,王建猛. 枯竭气藏CO2封存中的相平衡规律研究 [J]. 油气藏评价与开发, 2023, 13(3): 280-287. |
[2] | 姜颜波. 多孔介质对注CO2原油相态影响实验及表征 [J]. 油气藏评价与开发, 2020, 10(3): 23-27. |
|