油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (3): 296-304.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.004
陈秀林1,2(),王秀宇1,2(),许昌民1,2,张聪1,2
收稿日期:
2022-11-01
出版日期:
2023-06-26
发布日期:
2023-06-26
通讯作者:
王秀宇(1976—),女,博士,副教授,主要从事油层物理学和提高采收率研究。地址:北京市昌平区府学路18号中国石油大学(北京)石油工程学院油气田开发工程系,邮政编码:102249。E-mail:作者简介:
陈秀林(1996—),女,在读硕士研究生,主要从事二氧化碳地质埋存方面相关研究。地址:北京市昌平区府学路18号中国石油大学(北京)石油工程学院油气田开发工程系,邮政编码:102249。E-mail:CHEN Xiulin1,2(),WANG Xiuyu1,2(),XU Changmin1,2,ZHANG Cong1,2
Received:
2022-11-01
Online:
2023-06-26
Published:
2023-06-26
摘要:
CO2排放加剧,环境问题日益严峻,碳减排刻不容缓。CO2-EOR是地质封存CO2的主要手段,但国内外针对CO2-EOR方面的研究大多是对剩余油进行研究,驱油时针对CO2埋存形式的相关研究较少。研究利用核磁共振技术结合数值模拟手段,分析不同岩心饱和油进行气驱后CO2埋存形态及分布特征,结果表明:核磁共振技术结合微观气驱油数值模拟方法可以分析CO2的微观埋存形态,岩心中CO2驱替原油时,首先进入大孔道驱油,大孔隙中的压力达到一定程度后,原油向周围毛细管力分布不均的小孔喉流动,气体不断驱动原油,直到小孔压力累计至一定值小孔隙内原油才被驱走。数值模拟采用COMSOL Multiphysics软件进行,微观模拟结果显示大孔道中CO2主要以连片的自由气形态存在,而细小孔隙中CO2首先以溶解形式留存,大小孔隙中均没有完全以自由气或溶解气埋存的CO2。
中图分类号:
陈秀林, 王秀宇, 许昌民, 张聪. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究[J]. 油气藏评价与开发, 2023, 13(3): 296-304.
CHEN Xiulin, WANG Xiuyu, XU Changmin, ZHANG Cong. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304.
[1] | 江怀友, 沈平平, 罗金玲, 等. 世界CO2埋存技术现状与展望[J]. 中国能源, 2010, 32(6): 28-32. |
JIANG Huaiyou, SHEN Pingping, LUO Jinling, et al. Status and prospect of Carbon Dioxide storage technology around the world[J]. Energy of China, 2010, 32(6): 28-32. | |
[2] | 宗柳. IEA发布《全球能源回顾: 2021碳排放》报告[J]. 世界石油工业, 2022, 29(3): 80. |
ZONG Liu. IEA releases a report of Global Energy Review: 2021 Carbon Emissions[J]. World Petroleum Industry, 2022, 29(3): 80. | |
[3] |
LEACH A, MASON C F, VANT V K. Co-optimization of enhanced oil recovery and carbon sequestration[J]. Resource and Energy Economics, 2011, 33(4): 893-912.
doi: 10.1016/j.reseneeco.2010.11.002 |
[4] | PERIDAS G. Spinning straw into black gold—enhanced oil recovery using carbon dioxide[C]// Paper presented at the Oversight Hearing Before the Subcommittee on Energy and Mineral Resources of the Committee on Natural Resources, U.S. House of Representatives, One Hundred Tenth Congress, Second Session, Washington, USA, June 2008. |
[5] | 张虹, 董国臣, 王松洋, 等. 浅析显微CT技术在油气储层研究中的应用[J]. 资源与产业, 2013, 15(6): 98-102. |
ZHANG Hong, DONG Guochen, WANG Songyang, et al. Application of microscopic CT in oil-gas reservoir study[J]. Resources & Industries, 2013, 15(6): 98-102. | |
[6] | 吕伟峰, 冷振鹏, 张祖波, 等. 应用CT扫描技术研究低渗透岩心水驱油机理[J]. 油气地质与采收率, 2013, 20(2): 87-90. |
LV Weifeng, LENG Zhenpeng, ZHANG Zubo, et al. Study on waterflooding mechanism in low-permeability cores using CT scan technology[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(2): 87-90. | |
[7] | 梁斌, 王喜梅, 曾济楚, 等. CT扫描技术在岩心微观驱油特征分析中的应用[J]. 录井工程, 2019, 30(2): 34-37. |
LIANG Bin, WANG Ximei, ZENG Jichu, et al. Application of scanning technology in the analysis of core microscopic oil displacement characteristics[J]. Mud Logging Engineering, 2019, 30(2): 34-37. | |
[8] |
侯健, 邱茂鑫, 陆努, 等. 采用CT技术研究岩心剩余油微观赋存状态[J]. 石油学报, 2014, 35(2): 319-325.
doi: 10.7623/syxb201402012 |
HOU Jian, QIU Maoxin, LU Nu, et al. Characterization of residual oil microdistribution at pore scale using computerized tomography[J]. Acta Petrolei Sinica, 2014, 35(2): 319-325.
doi: 10.7623/syxb201402012 |
|
[9] |
LI J J, JIANG H Q, WANG C, et al. Pore-scale investigation of microscopic remaining oil variation characteristics in water-wet sandstone using CT scanning[J]. Journal of Natural Gas Science and Engineering, 2017, 48: 36-45.
doi: 10.1016/j.jngse.2017.04.003 |
[10] | 于明旭, 朱伟耀, 宋洪庆. 低渗透储层可视化微观渗流模型研制[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(12): 1646-1650. |
YU Mingxu, ZHU Weiyao, SONG Hongqing. Development of microscopic visualization flow model of low-permeability reservoir[J]. Journal of Liaoning Technical University(Natural Science), 2013, 32(12): 1646-1650. | |
[11] | 高辉, 孙卫, 路勇, 等. 特低渗透砂岩储层油水微观渗流通道与驱替特征实验研究: 以鄂尔多斯盆地延长组为例[J]. 油气地质与采收率, 2011, 18(1): 58-62. |
GAO Hui, SUN Wei, LU Yong, et al. Experimental study on micro-flow channel and displacement characteristic of ultra-low permeability sandstone reservoir-Taking Yanchang formation, Ordos Basin as example[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(1): 58-62. | |
[12] | 刘太勋, 徐怀民. 扇三角洲储层微观剩余油分布模拟试验[J]. 中国石油大学学报(自然科学版), 2011, 35(4): 20-26. |
LIU Taixun, XU Huaimin. Micro-remaining oil distribution simulation test of fan delta reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2011, 35(4): 20-26. | |
[13] | LI G, REN W X, MENG Y F, et al. Micro-flow kinetics research on water invasion in tight sandstone reservoirs[J]. Journal of Natural Gas Science & Engineering, 2014, 20(2): 184-191. |
[14] | 李登伟, 张烈辉, 周克明, 等. 可视化微观孔隙模型中气水两相渗流机理[J]. 中国石油大学学报(自然科学版), 2008, 32(3): 80-83. |
LI Dengwei, ZHANG Liehui, ZHOU Keming, et al. Gas-water two-phase flow mechanism in visual microscopic pore model[J]. Journal of Natural Gas Science & Engineering, 2008, 32(3): 80-83. | |
[15] | 滕起, 杨正明, 刘学伟, 等. 特低渗透油藏平面渗流规律研究[J]. 科学技术与工程, 2012, 12(36): 9820-9823. |
TENG Qi, YANG Zhengming, LIU Xuewei, et al. 2D seepage flow rule of the ultra-low permeability reservoir[J]. Science Technology and Engineering, 2012, 12(36): 9820-9823. | |
[16] | 吴聃, 鞠斌山, 陈常红, 等. 基于微观驱替实验的剩余油表征方法研究[J]. 中国科技论文, 2015, 10(23): 2707-2710. |
WU Dan, JU Binshan, CHEN Changhong, et al. Research on characterization method for residual oil based on microscopic displacement experiments[J]. China Sciencepaper, 2015, 10(23): 2707-2710. | |
[17] | LI R R, YANG Y S, PAN J X, et al. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels[J]. Physical Review E, 2014, 90(3): 1-10. |
[18] |
HUO F, HONG Z. MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks[J]. Science China-Technological Sciences, 2013, 56(12): 3115-3122.
doi: 10.1007/s11431-013-5402-3 |
[19] | 刘博伟, 牟松茹, 李彦来, 等. 基于格子玻尔兹曼方法的岩心切片渗流通道研究[J]. 石油化工高等学校学报, 2020, 33(6): 43-48. |
LIU Bowei, MOU Songru, LI Yanlai, et al. Study on seepage channel of core section based on Lattice Boltzmann method[J]. Journal of Petrochemical Universities, 2020, 33(6): 43-48. | |
[20] | 高硕, 柏明星. 聚合物驱油微观渗流机理数值模拟研究[J]. 石油化工高等学校学报, 2018, 31(4): 42-45. |
GAO Shuo, BAI Mingxing. Numerical simulation of polymer flooding mechanism in micropores[J]. Journal of Petrochemical Universities, 2018, 31(4): 42-45. | |
[21] |
黄兴, 倪军, 李响, 等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864.
doi: 10.7623/syxb202007007 |
HUANG Xing, NI Jun, LI Xiang, et al. Characteristics and influencing factors of CO2 flooding in different microscopic pore structures in tight reservoir[J]. Acta Petrolei Sinica, 2020, 41(7): 853-864.
doi: 10.7623/syxb202007007 |
|
[22] | 张晓辉, 张娟, 袁京素, 等. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48. |
ZHANG Xiaohui, ZHANG Juan, YUAN Jingsu, et al. Micro pore throat structure and its influence on seepage of Chang 81 tight reservoir in Nanliang-Huachi area,Ordos Basin[J]. Lithologic Reservoirs, 2021, 33(2): 36-48. | |
[23] | 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1): 72-76. |
TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research of the effect of CO2 injection on porous media and fluid property in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76. | |
[24] | 郭永伟, 闫方平, 王晶, 等. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161. |
GUO Yongwei, YAN Fangping, WANG Jing, et al. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs[J]. Lithologic Reservoirs, 2021, 33(3): 153-161. | |
[25] | 杨胜来, 魏俊之. 油层物理学[M]. 北京: 石油工业出版社, 2007. |
YANG Shenglai, WEI Junzhi. Fundamentals of petrophysics[M]. Beijing: Petroleum Industry Pess, 2007. | |
[26] |
ZHAO Y, ZHANG Y, LEI X, et al. CO2 flooding enhanced oil recovery evaluated using magnetic resonance imaging technique[J]. Energy, 2020, 203: 117878.
doi: 10.1016/j.energy.2020.117878 |
[27] | 薛海涛, 卢双舫, 付晓泰. 甲烷、 CO2和氮气在油相中溶解度的预测模型[J]. 石油与天然气地质, 2005(4): 444-449. |
XUE Haitao, LU Shuangfang, FU Xiaotai. Forecasting model of solubility of CH4, CO2, and N2 in crude oil[J]. Oil & Gas Geology, 2005(4): 444-449. | |
[28] | BROOKS R H, COREY A T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation & Drainage Division, 1964, 92(2): 61-88. |
[29] |
LI K W. Analytical derivation of Brooks-Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity[J]. Journal of Petroleum Science and Engineering, 2010, 73(1-2): 20-26.
doi: 10.1016/j.petrol.2010.05.002 |
[1] | 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识 [J]. 油气藏评价与开发, 2024, 14(2): 256-266. |
[2] | 张连锋,张伊琳,郭欢欢,李洪生,李俊杰,梁丽梅,李文静,胡书奎. 近废弃油藏延长生命周期开发调整技术 [J]. 油气藏评价与开发, 2024, 14(1): 124-132. |
[3] | 唐建东, 王智林, 葛政俊. 苏北盆地江苏油田CO2驱油技术进展及应用 [J]. 油气藏评价与开发, 2024, 14(1): 18-25. |
[4] | 李建山, 高浩, 鄢长灏, 王石头, 王亮亮. 原油-CO2相互作用机理分子动力学模拟研究 [J]. 油气藏评价与开发, 2024, 14(1): 26-34. |
[5] | 张志超,柏明星,杜思宇. 页岩油藏注CO2驱孔隙动用特征研究 [J]. 油气藏评价与开发, 2024, 14(1): 42-47. |
[6] | 张志升, 吴向阳, 吴倩, 王冀星, 林汉弛, 郭军红, 王锐, 李金花, 林千果. CO2驱油封存泄漏风险管理系统及应用研究 [J]. 油气藏评价与开发, 2024, 14(1): 91-101. |
[7] | 崔玉东, 陆程, 关子越, 罗万静, 滕柏路, 孟凡璞, 彭越. 南海海域天然气水合物降压开采储层蠕变对气井产能影响 [J]. 油气藏评价与开发, 2023, 13(6): 809-818. |
[8] | 何海燕, 刘先山, 耿少阳, 孙军昌, 孙彦春, 贾倩. 基于渗流-温度双场耦合的油藏型储气库数值模拟 [J]. 油气藏评价与开发, 2023, 13(6): 819-826. |
[9] | 梁运培, 张怀军, 王礼春, 秦朝中, 田键, 陈强, 史博文. 连续加载应力下真实裂缝流场和渗透率演化规律数值研究 [J]. 油气藏评价与开发, 2023, 13(6): 834-843. |
[10] | 施雷庭, 赵启明, 任镇宇, 朱诗杰, 朱珊珊. 煤岩裂隙形态对渗流能力影响数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(4): 424-432. |
[11] | 候梦如,梁冰,孙维吉,刘奇,赵航. 矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究 [J]. 油气藏评价与开发, 2023, 13(1): 100-107. |
[12] | 刘叶轩,刘向君,丁乙,周鑫,梁利喜. 考虑隔层影响的页岩油储层可压性评价方法 [J]. 油气藏评价与开发, 2023, 13(1): 74-82. |
[13] | 何封,冯强,崔宇诗. W页岩气藏气井控压生产制度数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(1): 91-99. |
[14] | 郭鸿,夏岩,陈雷,金光,刘建强. 废弃油气井改造的地热井换热性能影响因素模拟研究 [J]. 油气藏评价与开发, 2022, 12(6): 850-858. |
[15] | 陈劭颖,王伟,杨清纯,张立松. 干热岩储层多簇缝网压裂热流固顺序耦合模型研究 [J]. 油气藏评价与开发, 2022, 12(6): 869-876. |
|