[1] |
付晓飞, 吴桐, 吕延防, 等. 油气藏盖层封闭性研究现状及未来发展趋势[J]. 石油与天然气地质, 2018, 39(3): 454-471.
|
|
FU Xiaofei, WU Tong, LYU Yanfang, et al. Research status and future development trends of cap sealing of oil and gas reservoirs[J]. Oil & Gas Geology, 2018, 39(3): 454-471.
|
[2] |
谢玉洪. 莺歌海盆地高温高压盖层封盖能力定量评价[J]. 地球科学, 2019, 44(8): 2579-2589.
|
|
XIE Yuhong. Quantitative evaluation of capping capacity of high temperature and high pressure cap rocks in Yinggehai Basin[J]. Earth Science, 2019, 44(8): 2579-2589.
|
[3] |
吕延防, 张绍臣, 王亚明. 盖层封闭能力与盖层厚度的定量关系[J]. 石油学报, 2000, 21(2): 27-30.
doi: 10.7623/syxb200002005
|
|
LYU Yanfang, ZHANG Shaochen, WANG Yaming. Quantitative relationship between cap sealing capacity and cap thickness[J]. Acta Petrolei Sinica, 2000, 21(2): 27-30.
doi: 10.7623/syxb200002005
|
[4] |
李明诚, 李伟, 蔡峰, 等. 油气成藏保存条件的综合研究[J]. 石油学报, 1997, 18(2): 44-51.
|
|
LI Mingcheng, LI Wei, CAI Feng, et al. A comprehensive study on hydrocarbon accumulation and preservation conditions[J]. Acta Petrolei Sinica, 1997, 18(2): 44-51.
|
[5] |
唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1): 72-76.
|
|
TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research on the effect of CO2 injection on porous media and fluid properties in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76.
|
[6] |
唐洪明, 张文锦, 彭东宇, 等. 高岭石与CO2溶液反应实验研究[J]. 石油与天然气化工, 2022, 51(5): 104-109.
|
|
TANG Hongming, ZHANG Wenjin, PENG Dongyu, et al. Experimental study on reaction of kaolinite with CO2(aq)[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 104-109.
|
[7] |
董沅武, 王睿, 王思瑶, 等. 特低渗砂岩油藏CO2-低界面张力黏弹流体协同驱油机理研究[J]. 石油与天然气化工, 2022, 51(6): 77-83.
|
|
DONG Yuanwu, WANG Rui, WANG Siyao, et al. Study on synergistic oil displacement mechanism of CO2-low interfacial tension viscoelastic fluid alternating flooding in ultra-low permeability sandstone reservoir[J]. Chemical Engineering of Oil & Gas, 2022, 51(6): 77-83.
|
[8] |
郭永伟, 闫方平, 王晶, 等. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
|
|
GUO Yongwei, YAN Fangping, WANG Jing, et al. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs[J]. Lithologic Reservoirs, 2021, 33(3): 153-161.
|
[9] |
童晓光, 牛嘉玉. 区域盖层在油气聚集中的作用[J]. 石油勘探与开发, 1989, 1(4):1-8.
|
|
TONG Xiaoguang, NIU Jiayu. Role of regional cap rocks in hydrocarbon accumulation[J]. Petroleum Exploration and Development, 1989, 1(4): 1-8.
|
[10] |
付广, 张发强, 吕延防. 厚度在泥岩盖层封盖油气中的作用[J]. 天然气地球科学, 1998, 9(6): 20-25.
|
|
FU Guang, ZHANG Faqiang, LYU Yanfang. The role of thickness in the sealing of mudstone cap[J]. Natural Gas Geoscience, 1998, 9(6): 20-25.
|
[11] |
俞凌杰, 范明, 刘伟新, 等. 盖层封闭机理研究[J]. 石油实验地质, 2011, 33(1): 91-95.
|
|
YU Lingjie, FAN Ming, LIU Weixin, et al. Study on sealing mechanism of cap rock[J]. Petroleum Geology & Experiment, 2011, 33(1): 91-95.
|
[12] |
张蕾. 盖层物性封闭力学机制新认识[J]. 天然气地球科学, 2010, 21(1): 112-116.
|
|
ZHANG Lei. New understanding of mechanical mechanism of physical sealing of cap rocks[J]. Natural Gas Geoscience, 2010, 21(1): 112-116.
|
[13] |
马存飞, 董春梅, 林承焰, 等. 盖层有效厚度计算方法及应用[J]. 中国石油大学学报(自然科学版), 2018, 42(1): 21-31.
|
|
MA Cunfei, DONG Chunmei, LIN Chengyan, et al. Calculation method and application of effective cap thickness[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(1): 21-31.
|
[14] |
AMANN-HILDENBRAND A, KROOSS B M, BERTIER P, et al. Laboratory testing procedure for CO2 capillary entry pressures on caprocks[J]. Carbon Dioxide Capture for Storage in Deep Geological Formations, 2015, 4: 383-412.
|
[15] |
KAWAURA K, AKAKU K, NAKANO M. The threshold capillary pressure affected by the different properties of injection gases[C]// Paper SPWLA-2014-SS presented at the SPWLA 55th Annual Logging Symposium, Abu Dhabi, United Arab Emirates, May 2014.
|
[16] |
KIM S, SANTAMARINA J C. CO2 breakthrough and leak-sealing-Experiments on shale and cement[J]. International Journal of Greenhouse Gas Control, 2013, 19: 471-477.
doi: 10.1016/j.ijggc.2013.10.011
|
[17] |
LI S, DONG M, LI Z, et al. Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long‐term CO2 storage in the Weyburn field[J]. Geofluids, 2005, 5(4): 326-334.
doi: 10.1111/j.1468-8123.2005.00125.x
|
[18] |
WU T, PAN Z, CONNELL L D, et al. Gas breakthrough pressure of tight rocks: A review of experimental methods and data[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103408.
doi: 10.1016/j.jngse.2020.103408
|
[19] |
郝术仁. 泥岩盖层对CO2圈闭的细观性特征及模型研究[D]. 长春: 吉林大学, 2019.
|
|
HAO Shuren. Study on the mesoscopic characteristics and model of CO2 trap by mudstone cap layer[D]. Changchun: Jilin University, 2019.
|
[20] |
MA C, LIN C, DONG C, et al. Determination of the critical flow pore diameter of shale caprock[J]. Marine and Petroleum Geology, 2020, 112: 104042.
doi: 10.1016/j.marpetgeo.2019.104042
|
[21] |
NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bull, 93: 329-340.
doi: 10.1306/10240808059
|
[22] |
ESPINOZA D N, SANTAMARINA J C. CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage[J]. International Journal of Greenhouse Gas Control, 2017, 66: 218-229.
doi: 10.1016/j.ijggc.2017.09.019
|
[23] |
FIROUZI M, WILCOX J. Slippage and viscosity predictions in carbon micropores and their influence on CO2 and CH4 transport[J]. The Journal of chemical physics, 2013, 138(6): 064705.
doi: 10.1063/1.4790658
|
[24] |
杨宇, 周文, 姜平, 等. 对致密气藏水膜厚度的再认识[J]. 中国海上油气, 2019, 31(1): 94-102.
|
|
YANG Yu, ZHOU Wen, JIANG Pin, et al. Recognition of water film thickness in tight gas reservoirs[J]. China Offshore Oil and Gas, 2019, 31(1): 94-102.
|
[25] |
KVAMME B, KUZNETSOVA T, HEBACH A, et al. Measurements and modelling of interfacial tension for water+ carbon dioxide systems at elevated pressures[J]. Computational Materials Science, 2007, 38(3): 506-513.
doi: 10.1016/j.commatsci.2006.01.020
|
[26] |
WU J, FAN T L, GOMEZ-RIVAS E, et al. Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 557-579.
doi: 10.1016/j.marpetgeo.2019.01.014
|
[27] |
HE M X, ZHOU F Y, WU K L, et al. Pore network modeling of thin water film and its influence on relative permeability curves in tight formations[J]. Fuel, 2021, 289: 119828.
doi: 10.1016/j.fuel.2020.119828
|
[28] |
李维国, 同登科. 数值计算方法[M]. 东营: 中国石油大学出版社, 2008.
|
|
LI Weiguo, TONG Dengke. Numerical computation method[M]. Dongying: China University of Petroleum Press, 2008.
|
[29] |
李爱芬, 张志英, 崔传智, 等. 油层物理学[M]. 东营: 中国石油大学出版社, 2011.
|
|
LI Aifen, ZHANG Zhiying, CUI Chuanzhi, et al. Reservoir physics[M]. Dongying: China University of Petroleum Press, 2011.
|
[30] |
WATTS N L. Theoretical aspects of cap-rock and fault seals for single and two-phase hydrocarbon columns[J]. Marine and Petroleum Geology, 1987, 4(4): 274-307.
doi: 10.1016/0264-8172(87)90008-0
|
[31] |
KIVI I R, MAKHNENKO R Y, VILARRASA V. Two-Phase flow mechanisms controlling CO2 intrusion into shaly caprock[J]. Transport in Porous Media, 2022, 141(3): 771-798.
doi: 10.1007/s11242-022-01748-w
|
[32] |
WU Z W, CUI C Z, YANG Y, et al. A fractal permeability model of Tight oil reservoirs considering the effects of multiple factors[J]. Fractal and Fractional, 2022, 6(3): 153.
doi: 10.3390/fractalfract6030153
|
[33] |
LI L, SU Y L, WANG H, et al. A new slip length model for enhanced water flow coupling molecular interaction, pore dimension, wall roughness, and temperature[J]. Advances in Polymer Technology, 2019, 2019.
|
[34] |
WU K L, CHEN Z X, LI J, et al. Wettability effect on nanoconfined water flow[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3358-3363.
doi: 10.1073/pnas.1612608114
|
[35] |
MA C, CHEN Y, SUN G E, et al. Understanding water slippage through carbon nanotubes[J]. Physical Chemistry Chemical Physics, 2021, 23(27): 14737-14745.
doi: 10.1039/D1CP01148K
|
[36] |
PINGINTHA N, LECLERC M, BEASLEY J, et al. Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: Comparison of six models in the calculation of the relative gas diffusion coefficient[J]. Tellus B: Chemical and Physical Meteorology, 2010, 62(1): 47-58.
doi: 10.1111/j.1600-0889.2009.00445.x
|
[37] |
JONES H G. Plants and microclimate: A quantitative approach to environmental plant physiology[M]. Cambridge university press, 2013.
|
[38] |
LALA A M S. A novel model for reservoir rock tortuosity estimation[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107321.
doi: 10.1016/j.petrol.2020.107321
|
[39] |
李海波, 郭和坤, 李海舰, 等. 致密储层束缚水膜厚度分析[J]. 天然气地球科学, 2015, 26(1): 186-192.
|
|
LI Haibo, GUO Hekun, LI Haijian, et al. Analysis of bound water film thickness in tight reservoir[J]. Natural Gas Geoscience, 2015, 26(1): 186-192.
|
[40] |
IGLAUER S, AL-YASERI A Z, REZAEE R, et al. CO2 wettability of caprocks: Implications for structural storage capacity and containment security[J]. Geophysical Research Letters, 2015, 42(21): 9279-9284.
doi: 10.1002/2015GL065787
|
[41] |
STEPHAN K, LUCAS K. Viscosity of dense fluids[M]. New York: Springer Science & Business Media, 2013.
|