油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (3): 425-434.doi: 10.13809/j.cnki.cn32-1825/te.2024.03.012
收稿日期:
2023-05-22
发布日期:
2024-07-10
出版日期:
2024-06-26
作者简介:
臧素华(1985—),男,硕士,副研究员,主要从事油气地质综合研究及勘探部署工作。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210000。E-mail: 基金资助:
ZANG Suhua(),JING Xiaoming,LIU Zhihua,YIN Yanling
Received:
2023-05-22
Online:
2024-07-10
Published:
2024-06-26
摘要:
为评价以金坛盆地为代表的苏南新生代残留盆地非常规油气勘探潜力,以金坛盆地J9井钻井、岩心、测井及分析测试资料为基础,开展阜宁组四段岩石沉积特征、有机地球化学特征、矿物组成特征、储层特征等地质条件分析。研究结果表明:金坛盆地阜四段形成于浅湖—半深湖为主的半封闭—封闭咸化沉积环境,具有泥页岩厚度大(深凹带大于250 m)、总有机碳(TOC)含量偏低(平均为1.02%)、热演化成熟度(Ro)中低(介于0.81%~0.85%)的特征,具备一定的成烃物质基础。阜四段泥页岩发育裂缝、孔隙两类储集空间,具备良好的储集性能,同时脆性矿物含量较高,有利于后期的压裂改造。结合已有钻孔油气显示情况,认为苏南地区茅山构造推覆带前排的金坛盆地阜四段具备中低成熟度页岩油勘探潜力。
中图分类号:
Suhua ZANG,Xiaoming JING,Zhihua LIU, et al. Geological conditions for shale oil formation in the fourth member of Funing Formation of Eocene series in Jintan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 425-434.
表1
金坛盆地J9井阜宁组四段烃源岩地球化学特征"
井深/m | 岩性 | ω(TOC)/% | (S1+S2)/(mg/g) | 氯仿沥青“A”/% | 氢指数/(mg/g) | Tmax/oC | Ro/% |
---|---|---|---|---|---|---|---|
981.30 | 深灰色泥岩 | 1.40 | 1.59 | 0.184 | 106.27 | 429 | |
1 044.10 | 深灰色泥岩(含膏盐) | 0.68 | 0.39 | 0.099 | 54.09 | 423 | |
1 055.85 | 深灰色泥岩 | 1.08 | 0.44 | 0.036 | 38.36 | 426 | |
1 068.10 | 深灰色泥岩 | 0.92 | 0.65 | 68.15 | 429 | ||
1 075.10 | 深灰色泥岩 | 1.35 | 0.86 | 60.70 | 430 | ||
1 081.15 | 深灰色泥岩 | 1.35 | 0.99 | 0.309 | 70.28 | 430 | 0.81 |
1 137.00 | 灰色泥岩(含石膏) | 1.33 | 0.77 | 55.69 | 433 | ||
1 143.94 | 灰色泥岩 | 0.68 | 0.10 | 0.050 | 14.73 | 435 | |
1 155.25 | 灰色泥岩 | 1.55 | 9.43 | 0.210 | 600.29 | 443 | 0.85 |
1 162.20 | 灰色泥岩 | 3.71 | 31.40 | 0.210 | 830.57 | 447 | |
1 172.35 | 灰色泥岩 | 0.38 | 0.07 | 0.049 | 16.16 | 434 | |
1 176.77 | 灰色泥岩 | 1.11 | 3.58 | 0.016 | 299.74 | 443 | |
1 193.81 | 灰黑色泥岩 | 0.51 | 0.19 | 0.087 | 20.03 | 510 | |
1 195.10 | 灰黑色泥岩 | 1.36 | 0.48 | 0.087 | 24.21 | 373 | |
1 197.52 | 灰黑色泥岩(含古生物) | 0.24 | 0.04 | 14.20 | 522 | ||
1 200.45 | 灰黑色泥岩 | 0.13 | 0.06 | 34.42 | 502 | ||
1 201.14 | 灰色泥岩 | 0.07 | 0.03 | 36.99 | 510 | ||
1 218.50 | 灰黑色泥岩 | 0.74 | 0.22 | 12.81 | 524 | ||
1 222.10 | 灰黑色泥岩 | 0.87 | 0.45 | 0.246 | 22.57 | 527 |
表2
金坛盆地J9井阜宁组四段泥页岩有机显微组分含量统计"
井深/ m | 岩 性 | 腐泥组/% | 壳质组/% | 镜质组/% | 惰质组/% | 类型 指数 | 干酪根 类型 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
浮游 藻类 体 | 腐泥 无定 形体 | 小 计 | 树 脂 体 | 木栓 质体 | 角 质 体 | 孢 粉 体 | 菌孢体 | 腐殖无定形体 | 底栖藻无定形体 | 小 计 | 富氢 镜质体 | 正常 镜质体 | 小 计 | 丝 质 体 | |||||||
1 085.15 | 深灰色泥岩 | — | 66 | 66 | — | — | — | 1 | — | 5 | — | 6 | — | 7 | 7 | 21 | 42.8 | Ⅱ1 | |||
1 152.47 | 灰色泥岩 | — | 70 | 70 | — | — | — | 2 | — | 3 | — | 5 | — | 8 | 8 | 17 | 49.5 | Ⅱ1 | |||
1 155.25 | 灰色泥岩 | — | 76 | 76 | — | — | — | 2 | — | 3 | — | 5 | — | 6 | 6 | 13 | 61.0 | Ⅱ1 | |||
1 176.77 | 灰色泥岩 | — | 77 | 77 | — | — | — | 2 | — | 5 | — | 7 | — | 5 | 5 | 11 | 65.8 | Ⅱ1 | |||
1 187.00 | 灰黑色泥岩 | — | 68 | 68 | — | — | — | 2 | — | 3 | — | 5 | — | 5 | 5 | 22 | 44.8 | Ⅱ1 |
表3
金坛盆地J9井阜宁组四段全岩X射线衍射分析结果"
深度/m | 石英/% | 钾长石/% | 斜长石/% | 方解石/% | 白云石/% | 石盐/% | 黄铁矿/% | 方沸石/% | 滑石/% | 石膏/% | 硬石膏/% | 黏土矿物/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 055.75 | 13.1 | 1.1 | 2.7 | 4.0 | 33.7 | 1.2 | 6.4 | 13.4 | 2.6 | 21.8 | ||
1 044.00 | 13.4 | 1.5 | 2.7 | 4.9 | 24.7 | 1.7 | 3.1 | 16.5 | 1.0 | 30.5 | ||
1 068.00 | 17.0 | 1.5 | 3.6 | 4.4 | 15.6 | 1.7 | 2.2 | 16.8 | 0.8 | 36.4 | ||
1 075.00 | 11.6 | 1.0 | 2.4 | 1.3 | 47.2 | 2.1 | 3.6 | 11.1 | 1.3 | 18.4 | ||
1 081.00 | 10.7 | 1.8 | 1.7 | 1.8 | 46.5 | 1.6 | 3.4 | 10.9 | 2.4 | 19.2 | ||
1 085.00 | 5.1 | 0.6 | 0.7 | 2.2 | 67.3 | 1.6 | 4.6 | 7.6 | 0.5 | 9.8 | ||
1 143.80 | 8.6 | 1.0 | 1.9 | 19.3 | 36.5 | 0.9 | 1.2 | 8.4 | 0.7 | 21.5 | ||
1 152.37 | 11.7 | 1.0 | 4.2 | 22.6 | 28.4 | 3.8 | 10.1 | 1.0 | 17.2 | |||
1 155.15 | 25.4 | 1.3 | 3.6 | 20.1 | 8.2 | 0.5 | 4.7 | 24.5 | 11.7 | |||
1 162.15 | 19.5 | 1.3 | 3.5 | 38.3 | 10.6 | 1.3 | 9.9 | 3.9 | 11.7 | |||
1 172.30 | 28.5 | 1.6 | 6.7 | 17.5 | 11.6 | 1.3 | 8.7 | 1.1 | 23.0 | |||
1 176.67 | 11.0 | 0.7 | 5.3 | 64.2 | 8.4 | 0.5 | 2.9 | 7.0 | ||||
1 193.75 | 9.0 | 0.8 | 5.1 | 74.2 | 0.7 | 2.2 | 8.0 | |||||
1 195.00 | 33.3 | 3.7 | 16.3 | 18.4 | 1.6 | 2.9 | 4.9 | 18.9 | ||||
1 197.50 | 1.5 | 0.4 | 2.6 | 70.3 | 12.2 | 3.7 | 0.3 | 9.0 | ||||
1 200.41 | 1.2 | 1.0 | 1.2 | 63.5 | 1.8 | 0.1 | 8.4 | 1.2 | 21.6 | |||
1 201.11 | 1.7 | 1.0 | 3.4 | 66.8 | 2.0 | 0.2 | 1.1 | 23.8 | ||||
1 208.00 | 1.6 | 19.2 | 22.0 | 5.1 | 23.6 | 0.3 | 25.4 | 2.8 | ||||
1 218.46 | 8.7 | 0.9 | 76.6 | 2.6 | 1.0 | 0.9 | 9.3 | |||||
1 222.06 | 0.6 | 0.9 | 3.5 | 83.9 | 2.7 | 0.5 | 0.9 | 7.0 |
[1] |
邹才能, 朱如凯, 董大忠, 等. 页岩油气科技进步、发展战略及政策建议[J]. 石油学报, 2022, 43(12): 1675-1686.
doi: 10.7623/syxb202212001 |
ZOU Caineng, ZHU Rukai, DONG Dazhong, et al. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J]. Acta Petrolei Sinica, 2022, 43(12): 1675-1686.
doi: 10.7623/syxb202212001 |
|
[2] | 郭秋麟, 米石云, 张倩, 等. 中国页岩油资源评价方法与资源潜力探讨[J]. 石油实验地质, 2023, 45(3): 402-412. |
GUO Qiulin, MI Shiyun, ZHANG Qian, et al. Assessment methods and potential of shale oil resources in China[J]. Petroleum Geology & Experiment, 2023, 45(3): 402-412. | |
[3] | 张奎华, 孙中良, 张关龙, 等. 准噶尔盆地哈山地区下二叠统风城组泥页岩优势岩相与页岩油富集模式[J]. 石油实验地质, 2023, 45(4): 593-605. |
ZHANG Kuihua, SUN Zhongliang, ZHANG Guanlong, et al. Shale dominant lithofacies and shale oil enrichment model of Lower Permian Fengcheng Formation in Hashan area, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 593-605. | |
[4] | 徐田武, 张成富, 李红磊, 等. 不同环境下陆相页岩油气富集关键要素下限研究: 以中原油田探区为例[J]. 断块油气田, 2022, 29(6): 721-728. |
XU Tianwu, ZHANG Chengfu, LI Honglei, et al. Research on lower limits of key factor controlling hydrocarbon accumulation of continental shale in different environments: Taking exploratory area of Zhongyuan oilfield as an example[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 721-728. | |
[5] |
赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127.
doi: 10.13745/j.esf.sf.2022.8.31 |
ZHAO Wenzhi, ZHU Rukai, LIU Wei, et al. Enrichment conditions and distribution characteristics of lacustrine medium-to-high maturity shale oil in China[J]. Earth Science Frontiers, 2023, 30(1): 116-127.
doi: 10.13745/j.esf.sf.2022.8.31 |
|
[6] | 王韶华, 聂惠, 马胜钟, 等. 江汉盆地潜江凹陷古近系潜江组盐间页岩油资源评价与甜点区预测[J]. 石油实验地质, 2022, 44(1): 94-101. |
WANG Shaohua, NIE Hui, MA Shengzhong, et al. Resource evaluation and sweet-spot prediction of inter-salt shale oil of Paleogene Qianjiang Formation, Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 94-101. | |
[7] | 冯动军. 四川盆地侏罗系大安寨段陆相页岩油气地质特征及勘探方向[J]. 石油实验地质, 2022, 44(2): 219-230. |
FENG Dongjun. Geological characteristics and exploration direction of continental shale gas in Jurassic Da'anzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 219-230. | |
[8] |
云露, 何希鹏, 花彩霞, 等. 苏北盆地溱潼凹陷古近系陆相页岩油成藏地质特征及资源潜力[J]. 石油学报, 2023, 44(1): 176-187.
doi: 10.7623/syxb202301011 |
YUN Lu, HE Xipeng, HUA Caixia, et al. Accumulation characteristics and resource potential of Paleogene continental shale oil in Qintong sag of Subei Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 176-187.
doi: 10.7623/syxb202301011 |
|
[9] | 邹才能, 杨智, 李国欣, 等. 中国为什么可以实现陆相“页岩油革命”?[J]. 地球科学, 2022, 47(10): 3860-3863. |
ZOU Caineng, YANG Zhi, LI Guoxin, et al. Why can China realize the continental ‘shale oil revolution’?[J]. Earth Science, 2022, 47(10): 3860-3863. | |
[10] |
杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5): 553-559.
doi: 10.3969/j.issn.1672-7703.2019.05.002 |
YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553-559.
doi: 10.3969/j.issn.1672-7703.2019.05.002 |
|
[11] |
朱国文, 王小军, 张金友, 等. 松辽盆地陆相页岩油富集条件及勘探开发有利区[J]. 石油学报, 2023, 44(1): 110-124.
doi: 10.7623/syxb202301007 |
ZHU Guowen, WANG Xiaojun, ZHANG Jinyou, et al. Enrichment conditions and favorable zones for exploration and development of continental shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 110-124.
doi: 10.7623/syxb202301007 |
|
[12] | 姚红生, 云露, 昝灵, 等. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践[J]. 油气藏评价与开发, 2023, 13(2): 141-151. |
YAO Hongsheng, YUN Lu, ZAN Ling, et al. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(2): 141-151. | |
[13] | 张顺, 刘惠民, 张鹏飞, 等. 东营凹陷中低成熟度富碳酸盐页岩地质特征: 以牛庄洼陷沙四段上亚段为例[J]. 中国矿业大学学报, 2022, 51(6): 1138-1151. |
ZHANG Shun, LIU Huimin, ZHANG Pengfei, et al. Geological characteristics of shale oil enrichment in Niuzhuang sag, Dongying depression[J]. Journal of China University of Mining & Technology, 2022, 51(6): 1138-1151. | |
[14] | 徐兴友, 刘卫彬, 陈珊, 等. 松辽盆地南部陆相页岩油气勘查突破及意义[J]. 天然气工业, 2022, 42(3): 12-20. |
XU Xingyou, LIU Weibin, CHEN Shan, et al. Breakthroughs in continental shale oil and gas exploration in the southern Songliao Basin and its implications for carbon neutrality[J]. Natural Gas Industry, 2022, 42(3): 12-20. | |
[15] | 舒逸, 郑有恒, 包汉勇, 等. 四川盆地复兴地区下侏罗统页岩油气富集高产主控因素[J]. 世界石油工业, 2023, 30(5): 26-38. |
SHU Yi, ZHENG Youheng, BAO Hanyong, et al. Main controlling factors for high yield and enrichment of shale oil and gas in the Lower Jurassic in the Fuxing area of Sichuan Basin[J]. World Petroleum Industry, 2023, 30(5): 26-38. | |
[16] | 唐鑫萍, 许泓, 曹宇畅, 等. 三水盆地布二段灰岩夹层型页岩油地质特征[J]. 石油地质与工程, 2022, 36(2): 42-48. |
TANG Xinping, XU Hong, CAO Yuchang, et al. Geological characteristics of limestone interbedded shale oil in Bu 2 member of Sanshui Basin[J]. Petroleum Geology & Engineering, 2022, 36(2): 42-48. | |
[17] | 邱祖林. 苏南直溪桥盆地早第三纪地层孢粉组合及地质意义[J]. 江苏地质, 1999, 23(4): 216-220. |
QIU Zulin. Sporopollen composition in Paleogene system and its geological significance in Zhixiqiao Basin of South Jiangsu[J]. Jiangsu Geology, 1999, 23(4): 216-220. | |
[18] | 昝灵, 白鸾羲, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油基本特征及成因分析[J]. 石油实验地质, 2023, 45(2): 356-365. |
ZAN Ling, BAI Luanxi, YIN Yanling, et al. Basic characteristics and genesis analysis of shale oil in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 356-365. | |
[19] | 魏长青, 徐农隆. 金坛盆地茅兴段含盐地层沉积特征[J]. 中国煤田地质, 2004, 16(3): 13-14. |
WEI Changqing, XU Nonglong. Maoxing Block saliferous strata sedimentary characteristics, Jintan[J]. Coal Geology of China, 2004, 16(3): 13-14. | |
[20] | 国家能源局. 烃源岩地球化学评价方法: SY/T 5735—2019[S]. 北京: 石油工业出版社, 2019. |
National Energy Administration. Geochemical method for source rock evaluation: SY/T 5735—2019[S]. Beijing: Petroleum Industry Press, 2019. | |
[21] | 牛嘉玉, 张映红. 渤海湾盆地侵入岩-外变质带油气藏类型及成藏条件[J]. 特种油气藏, 2003, 10(1): 22-27. |
NIU Jiayu, ZHANG Yinghong. Reservior types and forming conditions in intrusion rock-exomorphic zone of Bohai Gulf basin[J]. Special Oil & Gas Reservoirs, 2003, 10(1): 22-27. | |
[22] | 潘文蕾, 彭金宁, 翟常博, 等. 苏北盆地海相地层残存状况及成藏类型分析[J]. 石油实验地质, 2022, 44(2): 231-240. |
PAN Wenlei, PENG Jinning, ZHAI Changbo, et al. Residual strata and hydrocarbon accumulation model of marine sediments in Subei Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 231-240. | |
[23] | 化祖献, 刘小平, 孙彪, 等. 断陷盆地斜坡带油气富集差异性及成藏主控因素——以苏北盆地金湖凹陷三河次凹为例[J]. 石油实验地质, 2022, 44(6): 950-958. |
HUA Zuxian, LIU Xiaoping, SUN Biao, et al. Differences in oil and gas enrichment in slope belts of rift basins and main controlling factors for hydrocarbon accumulation: A case study of Sanhe Sub-sag in Jinhu Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 950-958. | |
[24] | 邱旭明, 陈伟, 李鹤永, 等. 苏北盆地走滑构造与复杂断块油气成藏[J]. 石油实验地质, 2023, 45(3): 393-401. |
QIU Xuming, CHEN Wei, LI Heyong, et al. Strike-slip structures and hydrocarbon accumulation in complex fault blocks in Subei Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 393-401. | |
[25] |
许廷生. 渤海湾盆地岩浆侵入活动与油气成藏特征[J]. 特种油气藏, 2021, 28(1): 81-85.
doi: 10.3969/j.issn.1006-6535.2021.01.011 |
XU Tingsheng. Research on the magmatic intrusion and oil and gas reservoir forming characteristics in Bohai Bay Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 81-85.
doi: 10.3969/j.issn.1006-6535.2021.01.011 |
|
[26] | 雷鸣, 王丹丹, 邱小松, 等. 基于ANSYS的断层安全性评价方法及应用——以苏北盆地东台坳陷白驹含水层储气库为例[J]. 石油实验地质, 2022, 44(5): 904-913. |
LEI Ming, WANG Dandan, QIU Xiaosong, et al. Evaluation method for fault safety and its application based on ANSYS: A case study of Baiju aquifer gas storage in Dongtai Depression, Subei Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 904-913. | |
[27] | 金春爽, 乔德武, 淡伟宁. 渤海湾盆地中、新生代火山岩分布及油气藏特征[J]. 石油与天然气地质, 2012, 33(1): 19-36. |
JIN Chunshuang, QIAO Dewu, DAN Weining. Meso-Cenozoic volcanic rock distribution and reservoir characteristics in the Bohai Bay Basin[J]. Oil & Gas Geology, 2012, 33(1): 19-36. | |
[28] | 马晓潇, 黎茂稳, 胡克珍, 等. 渤海湾盆地济阳坳陷古近系异常高压成因及其与陆相页岩油富集的关系[J]. 石油实验地质, 2023, 45(1): 145-156. |
MA Xiaoxiao, LI Maowen, HU Kezhen, et al. Abnormal pressure genesis and its relationship with continental shale oil accumulation in Paleogene, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 145-156. |
[1] | 余文端, 高玉巧, 昝灵, 马晓东, 余麒麟, 李志鹏, 张枝焕. 溱潼凹陷阜宁组二段泥页岩含油性及页岩油富集层段分布 [J]. 油气藏评价与开发, 2024, 14(5): 688-698. |
[2] | 王心乾, 余文端, 马晓东, 周韬, 邰浩, 崔钦宇, 邓空, 陆永潮, 刘占红. 基于常规测井曲线的页岩岩相识别与应用——以苏北盆地溱潼凹陷阜宁组二段为例 [J]. 油气藏评价与开发, 2024, 14(5): 699-706. |
[3] | 张菲, 李秋政, 蒋阿明, 邓辞. 高邮凹陷花庄地区页岩油二维核磁测井评价应用 [J]. 油气藏评价与开发, 2024, 14(5): 707-713. |
[4] | 曹小朋, 刘海成, 李忠新, 陈先超, 江朋宇, 樊浩. 基于EDFM的页岩油水平井注水吞吐优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 734-740. |
[5] | 廖凯, 张士诚, 谢勃勃. 页岩油体积压裂后合理焖井时间模拟研究 [J]. 油气藏评价与开发, 2024, 14(5): 749-755. |
[6] | 刘绪钢, 李国锋, 李雷, 王锐霞, 方彦明. 页岩油储层压裂液渗吸驱油机理研究 [J]. 油气藏评价与开发, 2024, 14(5): 756-763. |
[7] | 刘巍, 曹小朋, 胡慧芳, 程紫燕, 卜亚辉. 页岩油水平井产量影响因素分析及压裂参数优化决策 [J]. 油气藏评价与开发, 2024, 14(5): 764-770. |
[8] | 王维恒, 郭鑫, 张斌, 夏巍巍. 页岩油用压驱一体剂的研制及性能评价——以苏北盆地阜宁组二段为例 [J]. 油气藏评价与开发, 2024, 14(5): 771-778. |
[9] | 段宏亮,谌廷姗,孙敬,洪亚飞,李思辰,卢显荣,张正阳. 苏北盆地页岩油基质与裂缝流动能力实验研究 [J]. 油气藏评价与开发, 2024, 14(3): 333-342. |
[10] | 王欣,韩建强,昝灵,李小龙,彭兴平. 苏北盆地溱潼凹陷阜宁组二段页岩油测井评价研究 [J]. 油气藏评价与开发, 2024, 14(3): 364-372. |
[11] | 管倩倩,蒋龙,程紫燕,张典栋,王云鹤,张帆. 东营凹陷页岩油岩相要素测井评价新方法及其应用 [J]. 油气藏评价与开发, 2024, 14(3): 435-445. |
[12] | 薛冈,郭涛,张烨,徐向阳,汪威,韩克宁,郭东鑫,金晓波. 渝南地区二叠系龙潭组C25煤层煤层气基础地质条件分析 [J]. 油气藏评价与开发, 2024, 14(3): 492-503. |
[13] | 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识 [J]. 油气藏评价与开发, 2024, 14(2): 256-266. |
[14] | 张志超,柏明星,杜思宇. 页岩油藏注CO2驱孔隙动用特征研究 [J]. 油气藏评价与开发, 2024, 14(1): 42-47. |
[15] | 赵坤,李泽阳,刘娟丽,胡可,江冉冉,王伟祥,刘秀珍. 吉木萨尔页岩油井区CO2前置压裂工艺参数优化及现场实践 [J]. 油气藏评价与开发, 2024, 14(1): 83-90. |
|