[1] |
刘义坤, 王凤娇, 汪玉梅, 等. 中低渗透储集层压驱提高采收率机理[J]. 石油勘探与开发, 2022, 49(4): 752-759.
doi: 10.11698/PED.20210815
|
|
LIU Yikun, WANG Fengjiao, WANG Yumei, et al. The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs[J]. Petroleum Exploration and Development, 2022, 49(4): 752-759.
|
[2] |
刘倩, 张金晶, 石华强, 等. 不同界面性质表面活性剂体系提高采收率作用效果和机理[J]. 油田化学, 2022, 39(4): 688-694.
|
|
LIU Qian, ZHANG Jinjing, SHI Huaqiang, et al. Enhanced oil recovery effect and mechanism of surfactants with different interfacial property[J]. Oilfield Chemistry, 2022, 39(4): 688-694.
|
[3] |
刘柯, 范洪富, 闫飚, 等. 制低渗透油藏渗吸采油机理及技术进展[J]. 油田化学, 2023, 40(1): 182-190.
|
|
LIU Ke, FAN Hongfu, YAN Biao, et al. Progress in mechanism and technology of imbibition recovery in low permeability reservoirs[J]. Oilfield Chemistry, 2023, 40(1): 182-190.
|
[4] |
郭建春, 马莅, 卢聪. 中国致密油藏压裂驱油技术进展及发展方向[J]. 石油学报, 2022, 43(12): 1788-1797.
doi: 10.7623/syxb202212009
|
|
GUO Jianchun, MA Li, LU Cong. Progress and development directions of fracturing flooding technology for tight reservoirs in China[J]. Acta Petrolei Sinica, 2022, 43(12): 1788-1797.
doi: 10.7623/syxb202212009
|
[5] |
欧阳伟平, 张冕, 孙虎, 等. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术, 2021, 49(4): 143-149.
|
|
OUYANG Weiping, ZHANG Mian, SUN Hu, et al. Numerical simulation of oil displacement by fracturing imbibition in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143-149.
|
[6] |
刘雨舟, 张志坚, 王磊, 等. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用[J]. 石油与天然气化工, 2022, 51(3): 76-81.
|
|
LIU Yuzhou, ZHANG Zhijian, WANG Lei, et al. Research progress of variable viscosity slick water in China and its application in unconventional gas reservoirs in Sichuan and Chongqing[J]. Chemical Engineering of Oil and Gas, 2022, 51(3): 76-81.
|
[7] |
李平, 樊平天, 郝世彦, 等. 大液量大排量低砂比滑溜水分段压裂工艺应用实践[J]. 石油钻采工艺, 2019, 41(4): 534-540.
|
|
LI Ping, FAN Pingtian, HAO Shiyan, et al. Application practice of the slick-water staged fracturing of massive fluid, high displacement and low sand concentration[J]. Oil Drilling & Production Technology, 2019, 41(4): 534-540.
|
[8] |
俞路遥, 许可, 方波, 等. 反相乳液聚合体系在油气田开发领域的应用进展[J]. 应用化工, 2022, 51(7): 2034-2039.
|
|
YU Luyao, XU Ke, FANG Bo, et al. Application progress of inverse emulsion polymerization system in oil and gas field[J]. Applied Chemical Industry, 2022, 51(7): 2034-2039.
|
[9] |
麦尔耶姆古丽·安外尔, 蒲迪, 翟怀建, 等. 悬浮液基高效减阻携砂压裂液的研发与应用[J]. 油田化学, 2022, 39(3): 387-392.
|
|
MAIERYEMUGULI Anwaier, PU Di, ZHAI Huaijian, et al. Development and application of fracturing fluid based suspension thickener with high efficient drag reduction and proppant transport[J]. Oilfield Chemistry, 2022, 39(3): 387-392.
|
[10] |
张志升. 适用于致密砂岩储层的多功能表面活性剂驱油压裂液体系[J]. 大庆石油地质与开发, 2020, 39(1): 169-174.
|
|
ZHANG Zhisheng. Multifunction surfactant oil-displacing fracturing fluid system suitable for tight sandstone reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(1): 169-174.
|
[11] |
范华波, 薛小佳, 李楷, 等. 驱油型表面活性剂压裂液的研发与应用[J]. 石油与天然气化工, 2019, 48(1): 74-79.
|
|
FAN Huabo, XUE Xiaojia, LI Kai, et al. Development and application of flooding surfactant fracturing fluid[J]. Chemical Engineering of Oil and Gas, 2019, 48(1): 74-79.
|
[12] |
李乐. 驱油压裂液的制备与性能评价[D]. 青岛: 中国石油大学(华东), 2017.
|
|
LI Le. Compound and evaluated a new type of oil-displacement fracturing fluid[D]. Qingdao: China University of Petroleum(East China), 2017.
|
[13] |
严娇. 压裂-驱油一体化工作液研制与应用基础研究[D]. 西安: 西安石油大学, 2019.
|
|
YAN Jiao. Fundamental research on development and application of fracturing-oil displacement integrated working fluid[D]. Xi'an: Xi'an Shiyou University, 2019.
|
[14] |
彭冲, 王晓飞, 付卜丹, 等. 渗吸置换型清洁压裂液技术研究[J]. 石油化工应用, 2020, 39(3): 33-36.
|
|
PENG Chong, WANG Xiaofei, FU Bodan, et al. Study of imbibition oil displacement modle of clean fracturing fluid[J]. Petrochemical Industry Application, 2020, 39(3): 33-36.
|
[15] |
BAI H, ZHOU F J, ZHANG M C, et al. Optimization and friction reduction study of a new type of viscoelastic slickwater system[J]. Journal of Molecular Liquids, 2021, 344(10): 117876.
|
[16] |
HLIDEK B, DUENCKEL R. High viscosity friction reducers-potential for fracture damage and impact of brines on proppant transport capability[C]// Paper 199736 presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, the Woodlands, Texas, USA, February 2022.
|
[17] |
李佳, 陈明贵, 耿向飞, 等. 低界面张力活性纳米流体的研制与渗吸驱油机理分析[J]. 油田化学, 2021, 38(2): 284-290.
|
|
LI Jia, CHEN Minggui, GEN Xiangfei, et al. Development of nano fluid with low interfacial tension and analysis of imbibition displacement mechanism[J]. Oilfield Chemistry, 2021, 38(2): 284-290.
|
[18] |
丁小惠, 周丹, 吴凯, 等. 纳米乳液渗吸驱油剂性能评价与应用[J]. 油田化学, 2022, 39(4): 651-657.
|
|
DING Xiaohui, ZHOU Dan, WU Kai, et al. Performance evaluation and application of nanoemulsion imbibition oil-displacing agent[J]. Oilfield Chemistry, 2022, 39(4): 651-657.
|
[19] |
昝灵, 骆卫峰, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J]. 石油实验地质, 2021, 43(2): 233-241.
|
|
ZAN Lin, LUO Weifeng, YIN Yanling, et al. Formation conditions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 233-241.
|
[20] |
荆晓明. 苏北盆地溱潼凹陷古近系阜二段页岩油甜点评价[J]. 非常规油气, 2023, 10(3): 31-38.
|
|
JING Xiaoming. Evaluation of shale oil sweet spots in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Unconventional Oil & Gas, 2023, 10(3): 31-38.
|