[1] |
孙杰, 程爱国, 刘亢, 等. 中国煤炭与煤层气协同勘查开发现状与发展趋势[J]. 中国地质, 2023, 50(3): 730-742.
|
|
SUN Jie, CHENG Aiguo, LIU Kang, et al. The current situation and development trend of coordinated exploration and development of coal and coalbed methane in China[J]. Geology in China, 2023, 50(3): 730-742.
|
[2] |
李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(2): 900-917.
|
|
LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2): 900-917.
|
[3] |
徐凤银, 王勃, 赵欣, 等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3): 9-18.
|
|
XU Fengyin, WANG Bo, ZHAO Xin, et al. Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of “double carbon”[J]. China Petroleum Exploration, 2021, 26(3): 9-18.
doi: 10.3969/j.issn.1672-7703.2021.03.002
|
[4] |
李勇, 吴鹏, 高计县, 等. 煤成气多层系富集机制与全含气系统模式——以鄂尔多斯盆地东缘临兴区块为例[J]. 天然气工业, 2022, 42(6): 52-64.
|
|
LI Yong, WU Peng, GAO Jixian, et al. Multilayer coal-derived gas enrichment mechanism and whole gas bearing system model: A case study on the Linxing Block along the eastern margin of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(6): 52-64.
|
[5] |
陈跃, 马东民, 方世跃, 等. 构造和水文地质条件耦合作用下煤层气富集高产模式[J]. 西安科技大学学报, 2019, 39(4): 644-655.
|
|
CHEN Yue, MA Dongmin, FANG Shiyue, et al. Enrichment and high-yield models of coalbed methane influenced by geologic structures and hydrologic conditions[J]. Journal of Xi'an University of Science and Technology, 2019, 39(4): 644-655.
|
[6] |
李勇, 许卫凯, 高计县, 等. “源-储-输导系统”联控煤系气富集成藏机制——以鄂尔多斯盆地东缘为例[J]. 煤炭学报, 2021, 46(8): 2440-2453.
|
|
LI Yong, XU Weikai, GAO Jixian, et al. Mechanism of coal measure gas accumulation under integrated control of “source reservoir-transport system”: A case study from east margin of Ordos Basin[J]. Journal of China Coal Society, 2021, 46(8): 2440-2453.
|
[7] |
赵少磊, 朱炎铭, 曹新款, 等. 地质构造对煤层气井产能的控制机理与规律[J]. 煤炭科学技术, 2012, 40(9):108-111.
|
|
ZHAO Shaolei, ZHU Yanming, CAO Xinkuan, et al. Control mechanism and law of geological structure affected to production capacity of coal bed methane well[J]. Coal Science and Technology, 2012, 40(9): 108-111.
|
[8] |
施雷庭, 赵启明, 任镇宇, 等. 煤岩裂隙形态对渗流能力影响数值模拟研究[J]. 油气藏评价与开发, 2023, 13(4): 424-432.
|
|
SHI Leiting, ZHAO Qiming, REN Zhenyu, et al. Numerical simulation study on the influence of coal rock fracture morphology on seepage capacity[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 424-432.
|
[9] |
胡千庭, 李晓旭, 陈强, 等. 酸性压裂液防治低渗煤层水锁损害实验研究[J]. 煤炭学报, 2022, 47(12): 4466-4481.
|
|
HU Qianting, LI Xiaoxu, CHEN Qiang, et al. Mitigating water blockage in low-permeability coal seam by acid-based fracturing fluid[J]. Journal of China Coal Society, 2022, 47(12): 4466-4481.
|
[10] |
李腾飞, 孙增奎, 林国涛, 等. 含方解石脉石炭系灰岩单轴压缩的变形破裂特点[J]. 工程地质学报, 2023, 31(2): 351-357..
|
|
LI Tengfei, SUN Zengkui, LIN Guotao, et al. Mechanical behavior of carboniferous limestone containing calcite veins under uniaxial compression conditions[J]. Journal of Engineering Geology, 2023, 31(2): 351-357.
|
[11] |
LEE H P, OLSON J E, HOLDER J, et al. The interaction of propagating opening mode fractures with preexisting discontinuities in shale[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1): 169-181.
|
[12] |
LEE H P, OlSON J E, SCHULTZ R A. Interaction analysis of propagating opening mode fractures with veins using the Discrete Element Method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 275-288.
|
[13] |
HUANG D, YANG Y Y, SONG Y X, et al. Fracture behavior of shale containing two parallel veins under semi-circular bend test using a phase-field method[J]. Engineering Fracture Mechanics, 2022, 267: 108428.
|
[14] |
GAO F Q, KANG H P, WU Y Z. Experimental and numerical study on the effect of calcite on the mechanical behaviour of coal[J]. International Journal of Coal Geology, 2016, 158: 119-128.
|
[15] |
王成旺, 徐凤银, 甄怀宾, 等. 鄂尔多斯盆地东缘本溪组8#煤层方解石脉体成因[J]. 特种油气藏, 2022, 29(4): 62-68.
doi: 10.3969/j.issn.1006-6535.2022.04.008
|
|
WANG Chengwang, XU Fengyin, ZHEN Huaibin, et al. Genesis of calcite veins in 8# coal bed of Benxi Formation on Eastern Margin of Ordos Basin[J]. Special Oil Gas Reservoirs, 2022, 29(4): 62-68.
|
[16] |
LIU J J, SONG H J, DAI S F, et al. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input[J]. Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration, 2019, 115: 103190.
|
[17] |
窦新钊, 姜波, 秦勇, 等. 黔西盘县地区煤层气成藏的构造控制[J]. 高校地质学报, 2012, 18(3): 447-452.
|
|
DOU Xinzhao, JIANG Bo, QIN Yong, et al. Tectonic control of coalbed methane reservoirs in Panxian, Western Guizhou[J]. Geological Journal of China Universities. 2012, 18(3): 447-452.
|
[18] |
蔡佳丽. 黔西滇东地区不同煤变质作用对煤储层物性的控制[D]. 中国地质大学(北京), 2012.
|
|
CAI Jiali. Control effect of different coal metamorphism on physical properties of coal reservoirs in Western Guizhou and Eastern Yunnan[D]. Beijing: China University of Geosciences(Beijing), 2012.
|
[19] |
曹代勇, 刘志飞, 王安民, 等. 构造物理化学条件对煤变质作用的控制[J]. 地学前缘, 2022, 29(1): 439-448.
doi: 10.13745/j.esf.sf.2020.12.11
|
|
CAO Daiyong, LIU Zhifei, WANG Anmin, et al. Control of coal metamorphism by tectonic physicochemical conditions[J]. Earth Science Frontiers, 2022, 29(1): 439-448.
doi: 10.13745/j.esf.sf.2020.12.11
|
[20] |
文德修. 六盘水地区控煤构造样式与赋煤规律[J]. 西部探矿工程, 2013, 25(11): 147-149.
|
|
WEN Dexiu. Coal-control tectonic pattern and coal-endowment law in Liupanshui area[J]. West-china Exploration Engineering, 2013, 25(11): 147-149.
|
[21] |
朱剑兵, 纪友亮, 李储华. 利用分形维数定量表征断裂发育程度[J]. 石油学报, 2005, 26(5): 53-56.
doi: 10.7623/syxb200505011
|
|
ZHU Jianbing, JI Youliang, LI Chuhua. Quantitative characterization of development degree of fractures in fault system by fractal dimension[J]. Acta Petrolei Sinica, 2005, 26(5): 53-56.
doi: 10.7623/syxb200505011
|
[22] |
LIU H, ZUO Y J, WU Z H, et al. Fractal analysis of mesoscale failure evolution and microstructure characterization for sandstone using DIP, SEM-EDS, and Micro-CT[J]. International Journal of Geomechanics, 2021, 21(9): 1-17.
|
[23] |
LIU H, WU Z H, ZUO Y J, et al. Fractal study on mesodamage evolution of three-dimensional irregular fissured sandstone[J]. International Journal of Geomechanics, 2023, 23(11): 1-15.
|
[24] |
唐摩天, 邬忠虎, 王安礼, 等. 不同围压下页岩微观破裂过程与量化研究[J]. 地下空间与工程学报, 2022, 18(2): 438-445.
|
|
TANG Motian, WU Zhonghu, WANG Anli, et al. Microscopic fracture process and quantitative study of shale under different confining pressures[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(2): 438-445.
|
[25] |
WU Z H, LI L P, LOU Y L, et al. Energy evolution analysis of coal fracture damage process based on digital image processing[J]. Applied Sciences, 2023, 12: 3944.
|
[26] |
侯连浪, 刘向君, 梁利喜, 等. 割理对煤岩加载过程能量演化特征影响数值模拟[J]. 煤炭学报, 2020, 45(3): 1061-1069.
|
|
HOU Lianlang, LIU Xiangjun, LIANG Lixi, et al. Numerical simulation of effect of cleats on energy evolution of coal and rock in loading process[J]. Journal of China Coal Society, 2020, 45(3): 1061-1069.
|
[27] |
刘镐, 左宇军, 邬忠虎, 等. 基于数字图像处理的混凝土内蕴裂纹扩展变形规律及破裂过程研究[J]. 混凝土, 2020, 363(1): 32-37.
|
|
LIU Hao, ZUO Yujun, WU Zhonghu, et al. Study of concrete internal crack growth deformation law and fracture process using digital images[J]. Concrete, 2020, 363(1): 32-37.
|
[28] |
PALUSZNY A, TANG X H, NEJATI M, et al. A direct fragmentation method with Weibull function distribution of sizes based on finite- and discrete element simulations[J]. International Journal of Solids and Structures, 2016, 80: 38-51.
|
[29] |
PAN X H, LYU Q. A quantitative strain energy indicator for predicting the failure of laboratory-scale rock samples: Application to shale rock[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2689-2707.
|
[30] |
TODINOV M T. Is Weibull distribution the correct model for predicting probability of failure initiated by non-interacting flaws?[J]. International Journal of Solids & Structures, 2009, 46(3-4): 887-901.
|
[31] |
ZHOU X P. Analysis of the localization of deformation and the complete stress-strain relation for mesoscopic heterogeneous brittle rock under dynamic uniaxial tensile loading[J]. International Journal of Solids & Structures, 2004, 41(5-6): 1725-1738.
|
[32] |
LIU H, MUKHERJEE B, ZUO Y J, et al. Fractal dimension used as a proxy to understand the spatial distribution for Carlin-type gold deposits[J]. Ore Geology Reviews, 2023, 158: 105534.
|
[33] |
YU Q L, ZHU W C, TANG C A, et al. Impact of rock microstructures on failure processes: Numerical study based on DIP technique[J]. Geomechanics and engineering, 2014, 7(4): 375-401.
|
[34] |
LI G, TANG C A. A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 74: 133-150.
|