油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (4): 613-624.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.010

• 方法理论 • 上一篇    下一篇

LARSEN & SKAUGE相渗滞后模型在高温高压CO2-水互驱实验中的适应性

王烁石(), 纪强, 郭平, 刘煌, 温连辉, 徐锐锋, 汪周华, 张瑞旭   

  1. 西南石油大学油气藏地质及开发工程全国重点实验室,四川 成都 610500
  • 收稿日期:2024-09-06 发布日期:2025-07-19 出版日期:2025-08-26
  • 作者简介:王烁石(1990—),男,博士,副研究员,主要从事非常规/致密油提高采收率、注CO2提高采收率、CCUS(碳捕集利用与封存)、中相微乳液等研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:shuoshi.wang@swpu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金项目“页岩油藏微乳液-CO2协同吞吐提高采收率机理研究”(52404044)

Applicability of LARSEN & SKAUGE relative permeability hysteresis model in high-temperature and high-pressure CO2-water alternating injection experiments

WANG Shuoshi(), JI Qiang, GUO Ping, LIU Huang, WEN Lianhui, XU Ruifeng, WANG Zhouhua, ZHANG Ruixu   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2024-09-06 Online:2025-07-19 Published:2025-08-26

摘要:

多孔介质中的相渗滞后效应经多年实验研究已经形成了较为统一的结论。由于相渗滞后效应的影响,气水交替过程中不同周期的相渗曲线形态、各束缚相饱和度等参数都受到饱和路径及饱和历史的影响变化。涉及多相渗流交变工况的石油工程应用不能忽略相渗滞后现象。现有CO2-水交替过程的数值模拟研究中对相渗滞后效应考虑不足,导致开发过程中CO2埋存量及油采收率等关键参数的数值模拟预测结果与实际情况存在偏差。因此,基于LARSEN & SKAUGE三相相渗滞后模型,设计并开展了含油岩心高温高压条件下的多周期CO2-水互驱实验,系统分析了不同起始注入相在混相或非混相条件下气水交替过程中相渗曲线的变化;通过LARSEN & SKAUGE三相相渗滞后模型进行了数值模拟岩心实验拟合,并对比了由实验测定的相渗滞后参数与拟合校正后滞后参数的拟合结果。结果表明:非混相实验中的滞后现象较混相实验更为显著。此外,岩心的初始饱和状态对气水交替驱替效果也有影响。由实验测得的滞后参数仅适用于初始拟合值,在不同工况的应用场景需要开展单独实验拟合。该研究结果可为评估CO2-水交替过程中的相渗滞后效应提供参考,揭示多周期气水交替驱替过程中的相渗曲线变化规律,提高油采收率和CO2埋存相渗滞后效应数值模拟研究的准确性。

关键词: 相渗滞后, CO2-气水交替, 高温高压, 数值模拟, LARSEN & SKAUGE模型

Abstract:

The relative permeability hysteresis effect in porous media has been studied extensively over many years, leading to relatively consistent conclusions. Due to the influence of this hysteresis effect, parameters such as the shapes of relative permeability curves across different cycles and the saturation levels of each trapped phase are affected by the saturation path and saturation history during gas-water alternating injection processes. In petroleum engineering applications involving multi-phase flow under alternating conditions, the relative permeability hysteresis phenomenon cannot be neglected. Current numerical simulation studies on CO₂-water alternating processes often fail to adequately consider the relative permeability hysteresis effect, leading to discrepancies between simulated and actual results for key parameters such as CO2 storage capacity and oil recovery rates. Therefore, based on the Larsen & Skauge three-phase relative permeability hysteresis model, multi-cycle CO₂-water alternating injection experiments were designed and conducted under high-temperature and high-pressure conditions using oil-bearing cores. The variations in relative permeability curves during gas-water alternating injection with different initial injection phases under both miscible and immiscible conditions were systematically analyzed. The Larsen & Skauge three-phase relative permeability hysteresis model was used to fit the core experimental data numerically, and the fitting results using experimentally measured hysteresis parameters were compared with those obtained after parameter calibration. The results showed that hysteresis phenomena were more pronounced in immiscible experiments compared to miscible ones. Additionally, the core’s initial saturation state influenced the gas-water alternating displacement effect. The experimentally determined hysteresis parameters were only valid as initial fitting values, and separate experimental fittings are required for different operating conditions. These findings provide a reference for evaluating the relative permeability hysteresis effect in CO₂-water alternating processes, reveal the variation patterns of relative permeability curves during multi-cycle gas-water alternating displacement, and improve the accuracy of numerical simulation studies on hysteresis effects related to oil recovery and CO₂ storage.

Key words: relative permeability hysteresis, CO2-water alternating injection, high temperature and pressure, numerical simulation, LARSEN & SKAUGE model

中图分类号: 

  • TE319