[1] |
费世祥, 王东旭, 林刚 , 等. 致密砂岩气藏水平井开发关键地质技术——以苏里格气田东南为例[J]. 天然气地球科学, 2014,25(10):1620-1629.
doi: 10.11764/j.issn.1672-1926.2014.10.1620
|
[2] |
何明舫, 马旭, 张燕明 , 等. 苏里格气田“工厂化”压裂作业方法[J]. 石油勘探与开发, 2014,41(3):349-353.
doi: 10.11698/PED.2014.03.11
|
[3] |
郑云川, 陶建林, 陆灯云 , 等. 苏里格气田储层改造的“三封四压”配套技术[J]. 天然气工业, 2007,27(12):102-104.
doi: 10.3321/j.issn:1000-0976.2007.12.031
|
[4] |
马旭, 郝瑞芬, 来轩昂 , 等. 苏里格气田致密砂岩气藏水平井体积压裂矿场试验[J]. 石油勘探与开发, 2014,41(6):742-747.
doi: 10.11698/PED.2014.06.15
|
[5] |
卢涛, 刘艳侠, 武力超 , 等. 鄂尔多斯盆地苏里格气田致密砂岩气藏稳产难点与对策[J]. 天然气工业, 2015,35(6):43-52.
doi: 10.3787/j.issn.1000-0976.2015.06.006
|
[6] |
孟德伟, 贾爱林, 冀光 , 等. 大型致密砂岩气田气水分布规律及控制因素——以鄂尔多斯盆地苏里格气田西区为例[J]. 石油勘探与开发, 2016,43(4):607-614.
doi: 10.11698/PED.2016.04.13
|
[7] |
庞崇友, 张亚东, 章辉若 , 等. 地质统计反演在苏里格气田致密薄砂体预测中的应用[J]. 物探与化探, 2017,41(1):16-21.
doi: 10.11720/wtyht.2017.1.03
|
[8] |
Maxwell S C, Urbancic T I, Steinsberger N, et al. Microseismic imaging of hydraulic fracture complexity in the Barnett shale[C]// paper SPE-77440-MS presented at the SPE Annual Technical Conference and Exhibition, 29 September-2 October 2002, San Antonio,Texas.
|
[9] |
Fisher M K, Wright C A, Davidson B M , et al. Integrating fracture mapping technologies to improve stimulations in the Barnett Shale[J]. SPE Production & Facilities, 2005,20(2):85-93.
|
[10] |
Mayerhofer M J, Lolon E, Warpinski N R , et al. What is stimulated reservoir volume?[J]. SPE Production & Operations, 2010,25(01):89-98.
|
[11] |
达引朋, 陆红军, 杨博丽 , 等. 低渗透老油田新型多缝重复压裂技术研究与应用[J]. 石油钻探技术, 2015,43(3):65-70.
doi: 10.11911/syztjs.201503013
|
[12] |
胡永全, 林辉, 赵金洲 , 等. 重复压裂技术研究[J]. 天然气工业, 2004,24(3):72-75.
|
[13] |
Babey A, Schmeltz P, Fragachan F. Using eco-friendly biodegradable materials for designing new completions and re-fracturing acidizing applications in which diversion and zonal isolation enhance efficiency[C]// paper SPE-174814-MS presented at the SPE Annual Technical Conference and Exhibition, 28-30 September 2015, Houston, Texas,USA.
|
[14] |
Pierre Terech A, Weiss R G . Low molecular mass gelators of organic liquids and the properties of their gels[J]. Cheminform, 1997,29(11):3133-3160.
doi: 10.1002/chin.199811319
pmid: 11851487
|
[15] |
王鹏 . 一种酰胺基团结尾的超级凝胶因子的酶促制备及其应用[D]. 天津:南开大学, 2013.
|
[16] |
Paramonov S E, Howook Jun A, Hartgerink J D . Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing[J]. Journal of the American Chemical Society, 2006,128(22):7291-7298.
doi: 10.1021/ja060573x
pmid: 16734483
|
[17] |
刘海林, 马晓燕, 袁莉 , 等. 分子自组装研究进展[J]. 材料科学与工程学报, 2004,22(2):308-311.
doi: 10.3969/j.issn.1673-2812.2004.02.037
|
[18] |
Wang D, Hao J . Self-assembly fibrillar network gels of simple surfactants in organic solvents[J]. Langmuir, 2011,27(5):1713-1717.
doi: 10.1021/la104333x
pmid: 21214186
|
[19] |
沈利英, 陈肖卓, 于海涛 , 等. 刺激响应型有机小分子凝胶的研究进展[J]. 有机化学, 2009,29(3):321-333.
|
[20] |
苏婷, 何宇鹏, 丁晓光 , 等. 双组分超分子凝胶的研究进展[J]. 现代化工, 2017,37(2):57-61.
|
[21] |
Keita Kuroiwa, Tomoko Shibata, Akihiko Takada , et al. Heat-set gel-like networks of lipophilic CO(II) triazole complexes in organic media and their thermochromic structural transitions[J]. Journal of the American Chemical Society, 2004,126(7):2016.
doi: 10.1021/ja037847q
pmid: 14971934
|
[22] |
Zhou J L, Chen X J, Zheng Y S . Heat-set gels and egg-like vesicles using two component gel system based on chiral calix[4]arenes[J]. Chemical Communications, 2007,48(48):5200.
doi: 10.1039/b713548c
pmid: 18060141
|
[23] |
付美龙, 陈畅, 胡泽文 . 转向重复压裂高效暂堵剂性能评价[J]. 西安石油大学学报:自然科学版, 2016,31(5):43-47.
doi: 10.3969/j.issn.1673-064X.2016.05.006
|