[1] |
董杰, 岳湘安, 孔彬, 等. 表面活性剂乳化能力差异对低渗油藏提高采收率的影响[J]. 石油与天然气化工, 2018, 47(2):80-84.
|
|
DONG Jie, YUE Xiang'an, KONG Bin, et al. Effect of surfactant emulsifying ability difference on EOR of low permeability reservoir[J]. Petroleum and natural gas chemical industry, 2018, 47(2):80-84.
|
[2] |
徐辉, 曹绪龙, 石静, 等. 新型物理交联凝胶体系性能特点及调驱能力研究[J]. 石油与天然气化工, 2018, 47(1):69-73.
|
|
XU Hui, CAO Xulong, SHI Jing, et al. Performance characteristics and profile control and driving ability of a new physical crosslinked gel system[J]. petroleum and natural gas chemical industry, 2018, 47(1):69-73.
|
[3] |
张大伟, 陈忠喜, 任璐, 等. 三元复合驱采出水性质及稳定性机理研究[J]. 石油与天然气化工, 2020, 49(1):104-111.
|
|
ZHANG Dawei, CHEN Zhongxi, REN Lu, et al. Study on properties and stability mechanism of ASP flooding produced water[J]. Petroleum and natural gas chemical industry, 2020, 49(1):104-111.
|
[4] |
赵慧霞. 超临界状态的分子动力学模拟研究[D]. 太原: 中北大学, 2013.
|
|
ZHAO Huixia. Molecular dynamics simulation of supercritical state[D]. Taiyuan: North University of China, 2013.
|
[5] |
ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. I. General method[J]. The Journal of Chemical Physics, 1959, 31(2):459-466.
doi: 10.1063/1.1730376
|
[6] |
SHEN Qiuyang, LU Han, WU Xuqing, et al. Statistical geosteering inversion by Hamiltonian dynamics Monte Carlo method[C]// paper presented at the SEG Technical Program Expanded Abstracts, 2017.
|
[7] |
ZAPATA Y, PHAN T N, REZA Z A. Multi-physics pore-scale modeling of particle plugging due to fluid invasion during hydraulic fracturing[C]// Unconventional Resources Technology Conference paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, 2018.
|
[8] |
ALLEN M R, TILDESLEY D J. Computer simulation of liquids[M]. Oxford: Clarendon Press,1987.
|
[9] |
薛定谔. 多孔介质中的渗流物理[M].王鸿勋,张朝琛,孙书琛译. 北京: 石油工业出版社, 1982.
|
|
SCHRÖDINGER A E. The physics of flow through porous media[M].translated by WANG H X, ZHANG C C, SUN S C. Beijing: Petroleum industry press,1982.
|
[10] |
葛春醒. 纳米孔隙气相导热系数的分子动力学模拟[D]. 哈尔滨: 哈尔滨工业大学, 2010.
|
|
GE Chunxing. Investigation of gas thermal condutivity in nanopore by molecular dynamics[D]. Harbin: Harbin Institute of Technology, 2010.
|
[11] |
SINGH A, JINDAL R, SAXENA A. Simulation and determination of optimal variables for increased oil recovery potential of surfactant polymer flooding[J]. Offshore Technology Conference, 2020.
|
[12] |
于帅, 孙芸芸. 基于分子模拟的降凝剂分子设计与性能研究[J]. 石油与天然气化工, 2018, 47(3):54-58.
|
|
YU Shuai, SUN Yunyun. Study on molecular design and performance of pour depressant based on molecular simulation[J]. Chemical Engineering of Oil & Gas, 2018, 47(3):54-58.
|
[13] |
UNGERER P, LACHET V, TAVITIAN B. Applications of molecular simulation in oil and gas production and processing[J]. Oil & Gas Science and Technology, 2006, 61(3)
|
[14] |
EBRO H, KIM Y M, KIM J H. Molecular dynamics simulations in membrane-based water treatment processes: A systematic overview[J]. Journal of Membrane Science, 2013,438.
|
[15] |
ALLEN M P. Introduction to Molecular dynamics simulation[M]. German: NIC Series, Julich,2004.
|
[16] |
RAPAPORT D C. The art of molecular dynamics simulation[M].Cambridge, UK: Cambridge University Press,1995.
|
[17] |
HAILE J M. Molecular dynamics simulation: elementary methods[M]. New York: John Wiley and Sons,1992.
|
[18] |
SEYYEDATTAR M, ZENDEHBOUDI S, BUTT S. Molecular dynamics simulations in reservoir analysis of offshore petroleum reserves: A systematic review of theory and applications[J]. Earth-Science Reviews, 2019,192.
|
[19] |
陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社,2007.
|
|
CHEN Zhenglong, XU Weiren, TANG Lida. Theory and practice of molecular modeling[M]. Beijing: Chemical Industry Press,2007.
|
[20] |
LE ROUX S, PETKOV V, LE S. Interactive structure analysis of amorphous and crystalline systems[J]. Journal of Applied Crystallography, 2010, 43(43):181-185.
doi: 10.1107/S0021889809051929
|
[21] |
VERLET L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1):98-103.
doi: 10.1103/PhysRev.159.98
|
[22] |
陈敏伯. 计算化学-从理论化学到分子模拟[M]. 北京: 科学出版社,2009.
|
|
CHEN Minbo. Computational chemistry: from theoretical chemistry to molecular simulation[M]. Beijing: Science Press,2009.
|
[23] |
GIBBS J W. Elementary principles in statistical mechanics[M]. New York: Charles Scribner's Sons,1902.
|
[24] |
EBRAHIMI D. Multiscale modeling of clay-water systems[M]. Massachusetts: Massachusetts Institute of Technology,2014.
|
[25] |
UNGERER P, NIETO-DRAGHI C, ROUSSEAU B, et al. Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions[J]. Journal of Molecular Liquids, 2007, 134(1-3):71-89.
doi: 10.1016/j.molliq.2006.12.014
|
[26] |
CHEN P K, YAO L, LIU Y Y, et al. Experimental and theoretical study of dilute polyacrylamide solutions: effect of salt concentration[J]. Journal of Molecular Modeling, 2012, 18(7)
|
[27] |
刘艳艳, 陈攀科, 罗健辉. 聚丙烯酰胺稀溶液的分子模拟[J]. 物理化学学报, 2010, 26(11):2907-2914.
doi: 10.3866/PKU.WHXB20101110
|
|
LIU Yanyan, CHEN Panke, LUO Jianhui. Molecular Simulation of dilute polyacrylamide solutions[J]. Acta Physico-Chimica Sinica, 2010, 26(11):2907-2914.
doi: 10.3866/PKU.WHXB20101110
|
[28] |
YUAN R, LI Y, LI C X, et al. Study about how the metal cationic ions affect the properties of partially hydrolyzed hydrophobically modified polyacrylamide (HMHPAM) in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013,434.
|
[29] |
YAO L, CHEN P K, DING B, et al. Molecular design of modified polyacrylamide for the salt tolerance[J]. Journal of Molecular Modeling, 2012, 18(9)
|
[30] |
NI T, HUANG G S, ZHENG J, et al. Research on the crosslinking mechanism of polyacrylamide/resol using molecular simulation and X-ray photoelectron spectroscopy[J]. Polymer Journal, 2010, 42(5)
|
[31] |
胡晓莹. 抗盐表面活性剂和聚合物的分子行为及性能研究[D]. 济南: 山东大学, 2011.
|
|
HU Xiaoying. Molecular behavior and properties study on salt tolerance surfactant and polymer[D]. Jinan: Shandong University, 2011.
|
[32] |
王华. 含表面活性剂复配体系自组装机理的理论研究[D]. 济南: 山东大学, 2014.
|
|
WANG Hua. Theoretical studies on the self-assemble of mixed systemcontaining surfactant[D]. Jinan: Shandong University, 2014.
|
[33] |
黄茜. 表面活性剂及聚合物体系的环境响应行为及机理研究[D]. 济南: 山东大学, 2009.
|
|
HUANG Q.. Environmental-responsive behavior and mechanism of surfactant and polymer systems[D]. Jinan: Shandong University, 2009.
|
[34] |
WANG H, ZHANG H, YUAN S L, et al. Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush[J]. Journal of Molecular Modeling, 2014, 20(6)
|
[35] |
LI W Z, WANG J H, XU D J. Molecular simulations of the effect of hydrated montmorillonite on the viscosity of polyacrylamide under confined shear[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2015, 30(3):556-561.
|
[36] |
EL-HOSHOUDY A N, ZAKI E G, ELSAEED S M. Experimental and Monte Carlo simulation of palmitate-guar gum derivative as a novel flooding agent in the underground reservoir[J]. Journal of Molecular Liquids, 2020,302.
|
[37] |
EL-HOSHOUDY A N, MANSOUR E M, DESOUKY S M. Experimental, computational and simulation oversight of silica-co-polyacrylates composite prepared by surfactant-stabilized emulsion for polymer flooding in unconsolidated sandstone reservoirs[J]. Journal of Molecular Liquids, 2020,308.
|
[38] |
FAN J C, WANG F C, CHEN J, et al. Molecular mechanism of viscoelastic polymer enhanced oil recovery in nanopores[J]. Royal Society Open Science, 2018, 5(6):180076.
doi: 10.1098/rsos.180076
|
[39] |
宋考平, 杨二龙, 王锦梅. 聚合物驱提高驱油效率机理及驱油效果分析[J]. 石油学报, 2004(3):71-74.
|
|
SONG Kaoping, YANG Erlong, WANG Jinmei. Mechanism of enhancing oil displacement efficiency by polymer flooding and driving effectiveness analysis[J]. Acta Petrolei Sinica, 2004(3):71-74.
|
[40] |
王海波. 活性高分子与原油相互作用机理探讨[J]. 油气地质与采收率, 2008(5):66-68.
|
|
WANG Haibo. Discussion on interaction mechanism of activated high molecular polymer and crude oil[J]. Petroleum Geology and Recovery Efficiency, 2008(5):66-68.
|