[1] |
孙焕泉, 蔡勋育, 周德华, 等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探, 2019, 24(5):569-575.
|
|
SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5):569-575.
|
[2] |
杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5):553-559.
|
|
YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5):553-559.
|
[3] |
MA L, DOWEY P J, RUTTER E, et al. A novel upscaling procedure for characterising heterogeneous shale porosity from nanometer-to millimetre-scale in 3D[J]. Energy, 2019, 181:1285-1297.
doi: 10.1016/j.energy.2019.06.011
|
[4] |
AFSHARPOOR A, JAVADPOUR F. Pore connectivity between organic and inorganic matter in shale: Network modeling of mercury capillary pressure[J]. Transport in Porous Media, 2018, 125(3):503-519.
doi: 10.1007/s11242-018-1132-0
|
[5] |
WU T H, LI X, ZHAO J L, et al. Multiscale pore structure and its effect on gas transport in organic-rich shale[J]. Water Resources Research, 2017, 53(7):5438-5450.
doi: 10.1002/2017WR020780
|
[6] |
OUGIER-SIMONIN A, RENARD F, Boehm C, et al. Microfracturing and microporosity in shales[J]. Earth-Science Reviews, 2016, 162:198-226.
doi: 10.1016/j.earscirev.2016.09.006
|
[7] |
LOUCKS R G, REED R M. Natural microfractures in unconventional shale-oil and shale-gas systems: Real, hypothetical, or wrongly defined?[J]. 2016.
|
[8] |
LANDRY C J, EICHHUBL P, PRODANOVIĆ M, et al. Nanoscale grain boundary channels in fracture cement enhance flow in mudrocks[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(5):3366-3376.
doi: 10.1002/jgrb.v121.5
|
[9] |
邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1):14-26.
|
|
ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1):14-26.
|
[10] |
宁方兴, 王学军, 郝雪峰, 等. 济阳坳陷不同岩相页岩油赋存机理[J]. 石油学报, 2017, 38(2):185-195.
|
|
NING Fangxing, WANG Xuejun, HAO Xuefeng, et al. Occurrence mechanism of shaleoil with different lithofacies in Jiyang depression[J]. Acta Petrolei Sinica, 2017, 38(2):185-195.
|
[11] |
王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4):789-802.
|
|
WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration And Development, 2019, 46(4):789-802.
|
[12] |
WANG S, JAVADPOUR F, FENG Q H. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171:74-86.
doi: 10.1016/j.fuel.2015.12.071
|
[13] |
WANG S, JAVADPOUR F, FENG QH. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J]. Fuel, 2016, 181:741-758.
doi: 10.1016/j.fuel.2016.05.057
|
[14] |
WANG S, FENG QH, JAVADPOUR F, et al. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place[J]. International Journal of Coal Geology, 2015, 147:9-24.
|
[15] |
MAJUMDER M, CHOPRA N, ANDREWS R, et al. Enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064):44-44.
doi: 10.1038/438044a
|
[16] |
WHITBY M, CAGNON L, THANOU M, et al. Enhanced fluid flow through nanoscale carbon pipes[J]. Nano Letters, 2008, 8(9):2632-2637.
doi: 10.1021/nl080705f
|
[17] |
HOLT J K, PARK H G, WANG Y M, et al. Fast mass transport through sub-2-nanometer carbon Nanotubes[J]. Science, 2006, 312(5776):1034-1037.
doi: 10.1126/science.1126298
|
[18] |
LIU P Y, LI J F, SUN S Y, et al. Numerical investigation of carbonate acidizing with gelled acid using a coupled thermal-hydrologic-chemical model[J]. International Journal of Thermal Sciences, 2021, 160:106700.
doi: 10.1016/j.ijthermalsci.2020.106700
|
[19] |
SONG W H, YIN Y, LANDRY C J, et al. A local-effective-viscosity multirelaxation-time lattice boltzmann pore-network coupling model for gas transport in complex nanoporous media[J]. SPE Journal, 2020.
|
[20] |
BLUNT M J. Flow in porous media—pore-network models and multiphase flow[J]. Current opinion in colloid & interface science, 2001, 6(3):197-207.
doi: 10.1016/S1359-0294(01)00084-X
|
[21] |
BLUNT M J, BIJELJIC B, DONG H, et al. Pore-scale imaging and modelling[J]. Advances in water resources, 2013, 51:197-216.
doi: 10.1016/j.advwatres.2012.03.003
|
[22] |
AFSHARPOOR A, JAVADPOUR F. Liquid slip flow in a network of shale noncircular nanopores[J]. Fuel, 2016, 180:580-590.
doi: 10.1016/j.fuel.2016.04.078
|
[23] |
YANG Y F, WANG K, ZHANG L, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251:683-692.
doi: 10.1016/j.fuel.2019.03.083
|
[24] |
SONG W H, YAO J, MA J S, et al. Assessing relative contributions of transport mechanisms and real gas properties to gas flow in nanoscale organic pores in shales by pore network modelling[J]. International Journal of Heat and Mass Transfer, 2017, 113:524-537.
doi: 10.1016/j.ijheatmasstransfer.2017.05.109
|