[1] |
陈美英, 刘亢, 宁树正, 等. 中国煤层气资源区划研究[J]. 中国煤炭地质, 2020, 32(11):1-5.
|
|
CHEN Meiying, LIU Kang, NING Shuzheng, et al. Study on CBM resources zoning in China[J]. Coal Geology of China, 2020, 32(11): 1-5.
|
[2] |
曾泉树, 高清春, 汪志明. 煤岩吸附高压甲烷的实验与模型研究[J]. 石油科学通报, 2020, 5(1):78-92.
|
|
ZENG Quanshu, GAO Qingchun, WANG Zhiming. Experimental and modeling studies on high pressure methane adsorbed on coals[J]. Petroleum Science Bulletin, 2020, 5(1): 78-92.
|
[3] |
宋岩, 柳少波, 赵孟军, 等. 煤层气与常规天然气成藏机理的差异性[J]. 天然气工业, 2011, 31(12):47-53.
|
|
SONG Yan, LIU Shaobo, ZHAO Mengjun, et al. Difference of gas pooling mechanism between coalbed methane gas and conventional natural gas[J]. Natural Gas Industry, 2011, 31(12): 47-53.
|
[4] |
李相方, 石军太, 杜希瑶, 等. 煤层气藏开发降压解吸气运移机理[J]. 石油勘探与开发, 2012, 39(2):203-213.
|
|
LI Xiangfang, SHI Juntai, DU Xiyao, et al. Transport mechanism of desorbed gas in coalbed methane reservoirs[J]. Petroleum Exploration and Development, 2012, 39(2): 203-213.
|
[5] |
石军太, 李相方, 徐兵祥, 等. 煤层气解吸扩散渗流模型研究进展[J]. 中国科学:物理学力学天文学, 2013, 43(12):1548-1557.
|
|
SHI Juntai, LI Xiangfang, XU Bingxiang, et al. Review on desorption-diffusion-flow model of coal-bed methane[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2013, 43(12): 1548-1557.
|
[6] |
李勇, 孟尚志, 吴鹏, 等. 煤层气成藏机理及气藏类型划分——以鄂尔多斯盆地东缘为例[J]. 天然气工业, 2017, 37(8):22-30.
|
|
LI Yong, MENG Shangzhi, WU Peng, et al. Accumulation mechanisms and classifi cation of CBM reservoir types: A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry, 2017, 37(8): 22-30.
|
[7] |
宋先知, 姚学喆, 李根生, 等. 基于LSTM-BP神经网络的地层孔隙压力计算方法[J]. 石油科学通报, 2022, 7(1):12-23.
|
|
SONG Xianzhi, YAO Xuezhe, LI Gensheng. A novel method to calculate formation pressure based on the LSTM-BP neural network[J]. Petroleum Science Bulletin, 2022, 7(1): 12-23.
|
[8] |
胡素明, 李相方, 胡小虎, 等. 考虑煤层气藏地解压差的物质平衡储量计算方法[J]. 煤田地质与勘探, 2012, 40(1):14-19.
|
|
HU Suming, LI Xiangfang, HU Xiaohu, et al. Reserves calculation method with a material balance equation considering the difference between initial coal seam pressure and critical desorption pressure[J]. Coal Geology & Exploration, 2012, 40(1): 14-19.
|
[9] |
曹毅民, 丁蓉, 赵启阳, 等. 煤层气可采储量计算方法的评价与应用[J]. 天然气工业, 2018, 38(S1):50-56.
|
|
CAO Yimin, DING Rong, ZHAO Qiyang, et al. Evaluation and application of calculation method of recoverable reserves of coalbed methane[J]. Natural Gas Industry, 2018, 38(S1): 50-56.
|
[10] |
SHI J T, WU J Y, SUN Z, et al. Methods for simultaneously evaluating reserve and permeability of undersaturated coalbed methane reservoirs using production data during the dewatering stage[J]. Petroleum Science, 2020, 17(4): 1067-1086.
doi: 10.1007/s12182-019-00410-3
|
[11] |
司淑平, 李文峰, 马建民. 煤层气井产能影响因素分析及对策[J]. 断块油气田, 2001, 8(5):50-53.
|
|
SI Shuping, LI Wenfeng, MA Jianmin, et al. Influence factors of production capacity and strategy on coalbed gas well[J]. Fault-Block Oil & Gas Field, 2001, 8(5): 50-53.
|
[12] |
肖宇航, 朱庆忠, 杨延辉, 等. 煤储层能量及其对煤层气开发影响研究—以郑庄区块为例[J]. 煤炭学报, 2021, 46(10):3286-3297.
|
|
XIAO Yuhang, ZHU Qingzhong, YANG Yanhui, et al. Coal reservoir energy and its impact on CBM exploitation: Illustrated by the case of Zhengzhuang block[J]. Journal of China Coal Society, 2021, 46(10): 3286-3297.
|
[13] |
石军太, 吴嘉仪, 房烨欣, 等. 考虑煤粉堵塞影响的煤储层渗透率模型及其应用[J]. 天然气工业, 2020, 40(6):78-89.
|
|
SHI Juntai, WU Jiayi, FANG Yexin, et al. A new coal reservoir permeability model considering the influence of pulverized coal blockage and its application[J]. Natural Gas Industry, 2020, 40(6): 78-89.
|
[14] |
赵兴龙, 常昊. 煤层气井整体压裂及排采技术研究——以延川南煤层气田为例[J]. 中国煤炭地质, 2021, 33(1):31-35.
|
|
ZHAO Xinglong, CHANG Hao. Study on CBM well integral fracturing and drainage technology: A case study of Yanchuannan CBM Field[J]. Coal Geology of China, 2021, 33(1): 31-35.
|
[15] |
姚艳芳, 李新春, 贾江丽, 等. 煤层气井DST与注入/压降测试对比分析[J]. 油气井测试, 2000, 9(1):60-65.
|
|
YAO Yanfang, LI Xinchun, JIA Jiangli, et al. Comparison and analysis of DST and injection/draw-down test in coal gas wells[J]. Well Testing, 2000, 9(1): 60-65.
|
[16] |
方世跃, 许哲, 何建琴, 等. 煤层气井注入/压降试井研究进展[J]. 煤炭科学技术, 2018, 46(9):227-232.
|
|
FANG Shiyue, XU Zhe, HE Jianqin, et al. Study progress of injection/pressure drop test well for coalbed methane well[J]. Coal Science and Technology, 2018, 46(9): 227-232.
|
[17] |
李士才, 邵先杰, 乔雨朋, 等. 韩城矿区煤层气井试井分析[J]. 延安大学学报(自然科学版), 2015, 34(2):31-35.
|
|
LI Shicai, SHAO Xianjie, QIAO Yupeng, et al. Analysis of CBM well test in Hancheng[J]. Journal of Yan'an University(Natural Science Edition), 2015, 34(2): 31-35.
|
[18] |
罗斌. 煤层气注水压降试井工艺发展及存在问题[J]. 内蒙古煤炭经济, 2019,(15):170.
|
|
LUO Bin. Development and existing problems of water pressure drop test technology for coalbed methane injection[J]. Inner Mongolia Coal Economy, 2019, (15): 170.
|
[19] |
陈江萌, 乔亚斌, 贾连超. 求取低渗低压气藏地层压力的一种新方法[J]. 石油化工应用, 2013, 32(1):56-59.
|
|
CHEN Jiangmeng, QIAO Yabin, JIA Lianchao. A new method to calculate formation pressure in low permeable gas reservoirs[J]. Petrochemical Industry Application, 2013, 32(1): 56-59.
|
[20] |
杨玲, 文彩霞, 董悦. 低渗透气藏气井平均地层压力简便计算方法[J]. 西安石油大学学报(自然科学版), 2013, 28(5):80-82.
|
|
YANG Ling, WEN Caixia, DONG Yue. A simplified calculation method for average formation pressure of gas well in low-permeability gas reservoir[J]. Journal of Xi'an Shiyou University(Natural Science), 2013, 28(5): 80-82.
|
[21] |
刘林松, 李闽, 计曙东. 低渗透气藏生产过程中不关井求取原始地层压力[J]. 钻采工艺, 2017, 40(1):54-55.
|
|
LIU Linsong, LI Min, JI Shudong. A method to calculate original formation pressure of low-permeability gas reservoirs without shut-in[J]. Drilling & Production Technology, 2017, 40(1): 54-55.
|
[22] |
张学英, 王钧剑, 王刚, 等. 煤层气藏气体产出路径研究——以沁水盆地南部马必东区块为例[J]. 油气地质与采收率, 2020, 27(2):137-142.
|
|
ZHANG Xueying, WANG Junjian, WANG Gang, et al. Gas production path of coalbed methane reservoir: A case study of Mabidong Block, southern Qinshui Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 137-142.
|
[23] |
秦勇, 袁亮, 胡千庭, 等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术, 2012, 40(10):1-6.
|
|
QIN Yong, YUAN Liang, HU Qianting, et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science and Technology, 2012, 40(10): 1-6.
|
[24] |
张遂安, 张典坤, 彭川, 等. 中国煤层气产业发展障碍及其对策[J]. 天然气工业, 2019, 39(4):118-124.
|
|
ZHANG Sui'an, ZHANG Diankun, PENG Chuan, et al. Obstacles to the development of CBM industry and countermeasures in China[J]. Natural Gas Industry, 2019, 39(4): 118-124.
|
[25] |
张遂安, 刘欣佳, 温庆志, 等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报, 2021, 42(1):105-118.
doi: 10.7623/syxb202101010
|
|
ZHANG Sui'an, LIU Xinjia, Wen Qingzhi, et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica, 2021, 42(1): 105-118.
doi: 10.7623/syxb202101010
|
[26] |
徐凤银, 王勃, 赵欣, 等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3):9-18.
|
|
XU Fengyin, WANG Bo, ZHAO Xin, et al. Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of “double carbon”[J]. China Petroleum Exploration, 2021, 26(3): 9-18.
|
[27] |
LIU Z H, LIU J S, PAN O Z, et al. Evolution and analysis of gas sorption-induced coal fracture strain data[J]. Petroleum Science, 2020, 17(2): 376-392.
doi: 10.1007/s12182-019-00422-z
|
[28] |
LI T, WU C F, WANG Z W. The dynamic change of pore structure for low-rank coal under refined upgrading pretreatment temperatures[J]. Petroleum Science, 2021, 18(2): 430-443.
doi: 10.1007/s12182-020-00536-9
|
[29] |
张正朝. 煤层气井压裂效果影响因素分析与技术对策[J]. 中国石油和化工标准与质量, 2018, 38(10):187-188.
|
|
ZHANG Zhengchao. Analysis on influencing factors of fracturing effect of coalbed gas well and technical countermeasures[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(10): 187-188.
|
[30] |
HOLDITCH S A, ELY J W, SEMMELBECK M E, et al. Enhanced recovery of coalbed methane through hydraulic fracturing[C]// Paper SPE-18250-MS presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, October 1988.
|
[31] |
杨琦. 煤层气压裂新技术研究[J]. 能源与环保, 2017,(1):117-120.
|
|
YANG Qi. Study on new technology of coal-bed gas fracturing[J]. China Energy and Environmental Protection, 2017, (1): 117-120.
|
[32] |
刘乐, 胡千庭, 李全贵, 等. 流量引起的注入压力变化对水力压裂效果的影响研究[J]. 矿业安全与环保, 2020, 47(4):1-5.
|
|
LIU Le, HU Qianting, LI Quangui, et al. Study on the influence of injection pressure variation caused by flow on hydraulic fracturing effect[J]. Mining Safety & Environmental Protection, 2020, 47(4): 1-5.
|
[33] |
徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探, 2022, 50(3):1-14.
|
|
XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration, 2022, 50(3): 1-14.
|
[34] |
曾泉树, 汪志明. 鄂尔多斯盆地东缘煤岩渗透率的应力和温度敏感特征[J]. 石油科学通报, 2020, 5(4):512-519.
|
|
ZENG Quanshu, WANG Zhiming. Stress and temperature sensitivity of coal permeability in the Eastern Ordos Basin[J]. Petroleum Science Bulletin, 2020, 5(4): 512-519.
|
[35] |
谭鹏, 金衍, 陈刚. 四川盆地不同埋深龙马溪页岩水力裂缝缝高延伸形态及差异分析[J]. 石油科学通报, 2022, 7(1):61-70.
|
|
TAN Peng, JIN Yan, CHEN Gang. Differences and causes of fracture height geometry for Longmaxi shale with different burial depths in the Sichuan basin[J]. Petroleum Science Bulletin, 2022, 7(1): 61-70.
|
[36] |
史璨, 林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报, 2021, 6(1):92-113.
|
|
SHI Can, LIN Botao. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 2021, 6(1): 92-113.
|
[37] |
石军太, 李文斌, 张龙龙, 等. 煤储层原始地层压力的计算方法及装置:CN202110880725.4[P]. 2021-11-05.
|
|
SHI Juntai, LI Wenbin, ZHANG Longlong, et al. Calculation method and device of original formation pressure of coal reservoir: CN202110880725.4[P]. 2021-11-05.
|
[38] |
石军太, 李文斌, 贾焰然, 等. 基于压裂后压力确定煤储层原始地层压力的方法及装置:CN202110880145.5[P]. 2021-09-21.
|
|
SHI Juntai, LI Wenbin, JIA Yanran, et al. Method and device for determining original formation pressure of coal reservoir based on post fracturing pressure: CN202110880145.5[P]. 2021-09-21.
|
[39] |
李晓蓉, 古臣旺, 冯永存, 等. 考虑井筒加载历史的压裂过程中套管剪切变形数值模拟研究[J]. 石油科学通报, 2021, 6(2):245-261.
|
|
LI Xiaorong, GU Chenwang, FENG Yongcun, et al. Numerical study of shear deformation of casings during hydraulic fracturing considering wellbore loading history[J]. Petroleum Science Bulletin, 2021, 6(2): 245-261.
|
[40] |
SHI J T, HOU C H, WANG S, et al. The semi-analytical productivity equations for vertically fractured coalbed methane wells considering pressure propagation process, variable mass flow, and fracture conductivity decrease[J]. Journal of Petroleum Science and Engineering, 2019, 178(7): 528-543.
doi: 10.1016/j.petrol.2019.03.047
|