油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (4): 617-625.doi: 10.13809/j.cnki.cn32-1825/te.2022.04.009
杨兆中1(),袁健峰1,朱静怡1,2(),李小刚1,李扬3,王浩1
收稿日期:
2022-04-14
出版日期:
2022-08-26
发布日期:
2022-09-02
通讯作者:
朱静怡
E-mail:yzzycl@vip.sina.com;zhujingyizoe@163.com
作者简介:
杨兆中(1969—),男,博士,教授,从事油气藏增产改造理论、技术和非常规天然气开发研究。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: 基金资助:
YANG Zhaozhong1(),YUAN Jianfeng1,ZHU Jingyi1,2(),LI Xiaogang1,LI Yang3,WANG Hao1
Received:
2022-04-14
Online:
2022-08-26
Published:
2022-09-02
Contact:
ZHU Jingyi
E-mail:yzzycl@vip.sina.com;zhujingyizoe@163.com
摘要:
注热增产技术是除水力压裂外另一种有效的煤层气增产方法,适用于含水率低和降压解吸困难的煤层。通过国内外文献调研,阐述了煤层气注热的增产机理,分析了注热升温对煤层吸附/解吸和渗透率的影响,总结了热采煤层气过程中的热—流—固耦合关系,介绍了注热蒸汽法、注热CO2法、微波注热法以及火烧煤层法4种注热增产的方法,综述了4种方法的技术原理、技术特点以及目前国内外的研究进展。研究表明注热方法可促进煤层气的解吸,提高游离态煤层气含量,达到煤层气增产的目的。同时注热导致的热致裂和煤热解可以改善煤层孔隙结构,沟通和增大煤层裂缝网络,有利于煤层气的扩散和渗流。煤层气的注热增产技术能有效解决煤层气含水率低、降压解吸困难、强水敏等问题,是可替代水力压裂的另一种极具潜力的增产方法。
中图分类号:
杨兆中,袁健峰,朱静怡,李小刚,李扬,王浩. 煤层气注热增产研究进展[J]. 油气藏评价与开发, 2022, 12(4): 617-625.
YANG Zhaozhong,YUAN Jianfeng,ZHU Jingyi,LI Xiaogang,LI Yang,WANG Hao. Thermal injection stimulation to enhance coalbed methane recovery[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 617-625.
[1] |
杨兆中, 刘云锐, 张平, 等. 煤层气直井地层破裂压力计算模型[J]. 石油学报, 2018, 39(5):578-586.
doi: 10.7623/syxb201805009 |
YANG Zhaozhong, LIU Yunrui, ZHANG Ping, et al. A model for calculating formation breakdown pressure in CBM vertical wells[J]. Acta Petrolei Sinica, 2018, 39(5): 578-586.
doi: 10.7623/syxb201805009 |
|
[2] | 李波波, 高政, 杨康, 等. 考虑温度、孔隙压力影响的煤岩渗透性演化机制分析[J]. 煤炭学报, 2020, 45(2):626-632. |
LI Bobo, GAO Zheng, YANG Kang, et al. Analysis of coal permeability evolution mechanism considering the effect of temperature and pore pressure[J]. Journal of China Coal Society, 2020, 45(2): 626-632. | |
[3] | 秘旭晴. 低渗透储层煤层气注热开采过程能量分布规律研究[D]. 阜新: 辽宁工程技术大学, 2019. |
MI Xuqing. Study on energy distribution law of coal seam gas injection in low permeability reservoir[D]. Fuxin: Liaoning Technical University, 2019. | |
[4] |
LIU D M, ZOU Z, CAI Y D, et al. An updated study on CH4 isothermal adsorption and isosteric adsorption heat behaviors of variable rank coals[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103899.
doi: 10.1016/j.jngse.2021.103899 |
[5] |
CHIHARU U, KOKI U, TAKUYA A, et al. New insights into the heat of adsorption of water, acetonitrile, and n-hexane in porous carbon with oxygen functional groups[J]. Journal of Colloid and Interface Science, 2019, 552: 412-417.
doi: 10.1016/j.jcis.2019.05.090 |
[6] |
YE J C, TAO S, ZHAO S P, et al. Characteristics of methane adsorption/desorption heat and energy with respect to coal rank[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104445.
doi: 10.1016/j.jngse.2022.104445 |
[7] |
DENG J C, KANG J H, ZHOU F B, et al. The adsorption heat of methane on coal: comparison of theoretical and calorimetric heat and model of heat flow by microcalorimeter[J]. Fuel, 2019, 237: 81-90.
doi: 10.1016/j.fuel.2018.09.123 |
[8] | 邱峰. 煤层气吸附/解吸过程中能量变化特征[D]. 北京: 中国地质大学(北京), 2021. |
QIU Feng. Variation characteristics of energy in the process of coalbed methane adsorption and desorption[D]. Beijing: China University of Geosciences(Beijing), 2021. | |
[9] | 刘曰武, 苏中良, 方虹斌, 等. 煤层气的解吸/吸附机理研究综述[J]. 油气井测试, 2010, 19(6):37-44. |
LIU Yuewu, SU Zhongliang, FANG Hongbin, et al. Review on CBM desorption/adsorption mechanism[J]. Well Testing, 2010, 19(6): 37-44. | |
[10] | 马东民, 张遂安, 王鹏刚, 等. 煤层气解吸的温度效应[J]. 煤田地质与勘探, 2011, 39(1):20-23. |
MA Dongmin, ZHANG Sui’an, WANG Penggang, et al. Mechanism of coalbed methane desorption at different temperatures[J]. Coal Geology and Exploration, 2011, 39(1): 20-23. | |
[11] | 曾社教, 马东民, 王鹏刚. 温度变化对煤层气解吸效果的影响[J]. 西安科技大学学报, 2009, 29(4):449-453. |
ZENG Shejiao, MA Dongmin, WANG Penggang. Effect of temperature changing on desorption of coalbed methane[J]. Journal of Xi’an University of Science and Technology, 2009, 29(4): 449-453. | |
[12] |
LIU J, KANG Y, CHEN M, et al. Effect of high-temperature treatment on the desorption efficiency of gas in coalbed methane reservoirs: Implication for formation heat treatment[J]. International Journal of Hydrogen Energy, 2022, 47(19): 10531-10546.
doi: 10.1016/j.ijhydene.2022.01.076 |
[13] | HAO S, ZHANG L, JIA Y. Synergistic effect of blast furnace slag on the pyrolysis process of oil-rich coal, tar product distribution and kinetic analysis[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021: 1-14. |
[14] | 马丽, 王双明, 段中会, 等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探, 2022, 50(2):1-8. |
MA Li, WANG Shuangming, DUAN Zhonghui, et al. Potential of oil-rich coal resources in Shaanxi Province and its new development suggestion[J]. Coal Geology & Exploration, 2022, 50(2): 1-8. | |
[15] | 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5):1365-1377. |
WANG Shuangming, SHI Qingmin, WANG Shengquan, et al. Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J]. Journal of China Coal Society, 2021, 46(5): 1365-1377. | |
[16] | 任常在, 代元军, 赵龙广. 低渗透煤层气间歇注热实验研究[J]. 煤炭技术, 2016, 35(1):22-24. |
REN Changzai, DAI Yuanjun, ZHAO Longguang. Experimental study of low permeability coal bed by intermittent inject Heat[J]. Coal Technology, 2016, 35(1): 22-24. | |
[17] |
LI B, REN C, WANG Z, et al. Experimental study on damage and the permeability evolution process of methane-containing coal under different temperature conditions[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106509.
doi: 10.1016/j.petrol.2019.106509 |
[18] |
JIANG C, WANG Y, DUAN M, et al. Experimental study on the evolution of pore-fracture structures and mechanism of permeability enhancement in coal under cyclic thermal shock[J]. Fuel, 2021, 304: 121455.
doi: 10.1016/j.fuel.2021.121455 |
[19] | 李波波, 高政, 杨康, 等. 温度与孔隙压力耦合作用下煤岩吸附—渗透率模型研究[J]. 岩石力学与工程学报, 2020, 39(4):668-681. |
LI Bobo, GAO Zheng, YANG Kang, et al. Study on coal adsorption-permeability model under the coupling of temperature and pore pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 668-681. | |
[20] | 巩天白. 低渗透储层煤层气注热开采能量迁移及热经济性评价研究[D]. 阜新: 辽宁工程技术大学, 2020. |
GONG Tianbai. Study on the evaluation of energy migration and thermal economics evaluation of CBM thermal injection mining in low permeability reservoirs[D]. Fuxin: Liaoning Technical University, 2020. | |
[21] |
GAO Z, LI B, LI J H, et al. Coal permeability related to matrix-fracture interaction at different temperatures and stresses[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108428.
doi: 10.1016/j.petrol.2021.108428 |
[22] |
LI X C, YAN X P, KANG Y L. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions[J]. Journal of Geophysics and Engineering, 2018, 15(2): 386-396.
doi: 10.1088/1742-2140/aa9a98 |
[23] | 滕腾. 煤层气开采中的热—湿—流—固耦合机理研究[D]. 徐州: 中国矿业大学, 2017. |
TENG Teng. Mechanism of heat-moisture-fluid-solid interactions in coal seam gas recovery[D]. Xuzhou: China University of Mining and Technology, 2017. | |
[24] |
WANG Z, LI S, LI Z. A novel strategy to reduce carbon emissions of heavy oil thermal recovery: Condensation heat transfer performance of flue gas-assisted steam flooding[J]. Applied Thermal Engineering, 2022, 205: 118076.
doi: 10.1016/j.applthermaleng.2022.118076 |
[25] | 杨新乐, 张永利. 热采煤层气藏过程煤层气运移规律的数值模拟[J]. 中国矿业大学学报, 2011, 40(1):89-94. |
YANG Xinle, ZHANG Yongli. Numerical simulation on flow rules of coal-bed methane by thermal stimulation[J]. Journal of China University of Mining and Technology, 2011, 40(1): 89-94. | |
[26] | 刘杰. 低渗透煤层煤层气注热开采中注热过程的温度场分析[D]. 阜新: 辽宁工程技术大学, 2008. |
LIU Jie. Analysis on temperature field through injection of heat into low permeability coal seam[D]. Fuxin: Liaoning Technical University, 2008. | |
[27] | 石晓巅. 煤层气热采等效热传导物理与数值模拟研究[D]. 太原: 太原理工大学, 2021. |
SHI Xiaodian. Study on equivalent heat conduction physics and numerical simulation of exploitation of CBM by vapor injection[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
[28] | 柴琳. 煤吸附超临界状态甲烷—水蒸气规律及注热增产机理研究[D]. 太原: 太原理工大学, 2017. |
CHAI Lin. Study on adsorption law of super critical methane and water vapor and heat injection mechanism of ECBM[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
[29] | 唐明云, 张亮伟, 郑春山, 等. 考虑蒸汽相变煤层气注热开采数值模拟研究[J]. 采矿与安全工程学报, 2022, 39(2):370-379. |
TANG Mingyun, ZHANG Liangwei, ZHENG Chunshan, et al. Numerical simulation of coalbed methane production by heat injection considering steam condensation[J]. Journal of Mining and Safety Engineering, 2022, 39(2): 370-379. | |
[30] | 杨新乐, 任常在, 张永利, 等. 低渗透煤层气注热开采热—流—固耦合数学模型及数值模拟[J]. 煤炭学报, 2013, 38(6):1044-1049. |
YANG Xinle, REN Changzai, ZHANG Yongli, et al. Numerical simulation of the coupled thermal fluid solid mathematical models during extracting methane in low permeability coal bed by heat injection[J]. Journal of China Coal Society, 2013, 38(6): 1044-1049. | |
[31] |
WEI G M, WEN H, DENG J, et al. Liquid CO2 injection to enhance coalbed methane recovery: An experiment and in-situ application test[J]. Fuel, 2021, 284: 119043.
doi: 10.1016/j.fuel.2020.119043 |
[32] | 王永康. 注二氧化碳驱替甲烷实验及数值模拟分析[D]. 徐州: 中国矿业大学, 2016. |
WANG Yongkang. Experiment and numerical simulation analysis of displacing CH4 by CO2 injection[D]. Xuzhou: China University of Mining and Technology, 2016. | |
[33] | MU Y L, FAN Y P, WANG J, et al. Numerical study on the injection of heated CO2 to enhance CH4 recovery in water-bearing coal reservoirs[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019: 1-19. |
[34] |
FANG H H, SANG S X, LIU S Q. The coupling mechanism of the thermal-hydraulic-mechanical fields in CH4-bearing coal and its application in the CO2-enhanced coalbed methane recovery[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106177.
doi: 10.1016/j.petrol.2019.06.041 |
[35] |
FANG H H, SANG S X, LIU S Q. Numerical simulation of enhancing coalbed methane recovery by injecting CO2 with heat injection[J]. Petroleum Science, 2019, 16(1): 32-43.
doi: 10.1007/s12182-018-0291-5 |
[36] |
MA T R, RUTQVIST J, OIDENBURG C M, et al. Coupled thermal-hydrological-mechanical modeling of CO2-enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2017, 179: 81-91.
doi: 10.1016/j.coal.2017.05.013 |
[37] | 黎力, 梁卫国, 李治刚, 等. 注热CO2驱替增产煤层气试验研究[J]. 煤炭学报, 2017, 42(8):2044-2050. |
LI Li, LIANG Weiguo, LI Zhigang, et al. Experimental investigation on enhancing coalbed methane recovery by injecting high temperature CO2[J]. Journal of China Coal Society, 2017, 42(8): 2044-2050. | |
[38] | 黎力. 注热CO2驱替增产煤层气试验与数值模拟研究[D]. 太原: 太原理工大学, 2017. |
LI Li. Experimental and numerical investigation on enhancing coalbed methane recovery by injection heated CO2[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
[39] | 封官宏. 二氧化碳置换煤层气(CO2-ECBM)地质工程中多相渗流和相态转化过程分析与数值模型[D]. 长春: 吉林大学, 2018. |
FENG Guanhong. Process analyses and numerical models for multiphase flow and phase change in CO2-ECBM engineering[D]. Changchun: Jilin University, 2018. | |
[40] | 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探, 2018, 46(5):1-9. |
SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology Exploration, 2018, 46(5): 1-9. | |
[41] | 杨兆中, 朱静怡, 李小刚, 等. 微波加热技术在非常规油资源中的研究现状与展望[J]. 化工进展, 2016, 35(11):3478-3483. |
YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. Progress in researches on microwave heating in unconventional oil resources[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3478-3483. | |
[42] | 崔宏达. 微波加热开采煤层气解吸渗流过程数值模拟研究[D]. 阜新: 辽宁工程技术大学, 2015. |
CUI Hongda. Numerical simulation of the exploitation of CBM desorption process by microwave heating[D]. Fuxin: Liaoning Technical University, 2015. | |
[43] | 李贺. 微波辐射下煤体热力响应及其流—固耦合机制研究[D]. 徐州: 中国矿业大学, 2018. |
LI He. Thermodynamical response of coal and the hydraulic-mechanical coupling mechanism under microwave irradiation[D]. Xuzhou: China University of Mining and Technology, 2018. | |
[44] | 崔余岩. 微波加热提高煤层气渗流性能的研究[D]. 阜新: 辽宁工程技术大学, 2017. |
CUI Yuyan. Study on improving the seepage performance of coal-bed methane by microwave heating[D]. Fuxin: Liaoning Technical University, 2017. | |
[45] | 马小童. 微波对煤中甲烷解吸—二氧化碳吸附双重激励作用及机理[D]. 焦作: 河南理工大学, 2019. |
MA Xiaotong. Double excitation and mechanism of microwave on methane desorption and carbon dioxide adsorption in coal[D]. Jiaozuo: Henan Polytechnic University, 2019. | |
[46] | 胡国忠, 朱怡然, 李志强. 可控源微波场促进煤体中甲烷解吸的试验研究[J]. 岩石力学与工程学报, 2017, 36(4):874-880. |
HU Guozhong, ZHU Yiran, LI Zhiqiang. Experimental study on desorption enhancing of methane in coal mass using a controlled microwave field[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 874-880. | |
[47] |
WANG Z J, WANG X J. Promotion effects of microwave heating on coalbed methane desorption compared with conductive heating[J]. Scientific Reports, 2021, 11(1): 1-16.
doi: 10.1038/s41598-020-79139-8 |
[48] |
FU X X, LUN Z M, ZHAO C P, et al. Influences of controlled microwave field irradiation on physicochemical property and methane adsorption and desorption capability of coals: Implications for coalbed methane (CBM) production[J]. Fuel, 2021, 301: 121022.
doi: 10.1016/j.fuel.2021.121022 |
[49] |
HUANG J X, XU G, LIANG Y P, et al. Improving coal permeability using microwave heating technology—A review[J]. Fuel, 2020, 266: 117022.
doi: 10.1016/j.fuel.2020.117022 |
[50] |
LAN W J, WANG H X, LIU Q H, et al. Investigation on the microwave heating technology for coalbed methane recovery[J]. Energy, 2021, 237: 121450.
doi: 10.1016/j.energy.2021.121450 |
[51] | 王晓娟. 微波辐射下煤储层电磁—热—流—固耦合及数值模拟[D]. 焦作: 河南理工大学, 2020. |
WANG Xiaojuan. Electromagnetic-thermal-hydraulic-mechanical coupling and numerical simulation of coal reservoir under microwave irradiation[D]. Jiaozuo: Henan Polytechnic University, 2020. | |
[52] |
HUANG J X, XU G, HU G Z, et al. A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal[J]. Fuel Processing Technology, 2018, 177: 237-245.
doi: 10.1016/j.fuproc.2018.04.034 |
[53] | ZHU J Y, WANG H, YANG Z Z, et al. Thermal stimulation on enhanced coalbed methane recovery under microwave heating based on a fully coupled numerical model[C]// Paper SPE-208904-MS presented at the SPE Canadian Energy Technology Conference, Calgary, Alberta, Canada, March 2022. |
[54] | ZHU J Y, YANG Z Z, LI X G, et al. The effect of microwave irradiation on coal for enhanced gas recovery of coalbed methane[C]// Paper URTEC-2019-92-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, July 2019. |
[55] |
SUN C, LIU W Q, YANG R, et al. Sensitivity analysis on the microwave irradiation enhancing coal seam gas recovery: A coupled electromagnetic-thermo-hydro-mechanical model[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 104457.
doi: 10.1016/j.jngse.2022.104457 |
[56] |
LIN B Q, LI H, CHEN Z W, et al. Sensitivity analysis on the microwave heating of coal: A coupled electromagnetic and heat transfer model[J]. Applied Thermal Engineering, 2017, 126: 949-962.
doi: 10.1016/j.applthermaleng.2017.08.012 |
[57] | 杨新乐, 姜涛, 苏畅, 等. 脉动微波循环注热开采煤层气数值模拟[J]. 微波学报, 2021, 37(4):89-94. |
YANG Xinle, JIANG Tao, SU Chang, et al. Numerical simulation of coalbed methane extraction by pulsation cycle microwave heat injection[J]. Journal of Microwaves, 2021, 37(4): 89-94. | |
[58] |
WANG Z X, GAO D L, FANG J. Numerical simulation of RF heating heavy oil reservoir based on the coupling between electromagnetic and temperature field[J]. Fuel, 2018, 220: 14-24.
doi: 10.1016/j.fuel.2018.02.012 |
[59] | 毛琼, 王绪性, 王芳, 等. 火烧煤层开采煤层气的研究[J]. 中国煤层气, 2011, 8(6):33-36. |
MAO Qiong, WANG Xuxing, WANG Fang, et al. Study on extraction of CBM by combustion of coal seams[J]. China Coalbed Methane, 2011, 8(6): 33-36. | |
[60] |
BHUTTO A W, BAZMI A A, ZAHEDI G. Underground coal gasification: From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1): 189-214.
doi: 10.1016/j.pecs.2012.09.004 |
[61] | 谢启红. 火烧煤层提高煤层气采收率机理研究[D]. 秦皇岛: 燕山大学, 2017. |
XIE Qihong. The mechanism of burning coal on enhancing coalbed methane recovery[D]. Qinhuangdao: Yanshan University, 2017. | |
[62] | 刘盈, 马悦, 黄俊杰. 火烧煤层数值模拟研究[J]. 煤炭技术, 2017, 36(9):29-31. |
LIU Ying, MA Yue, HUANG Junjie. Numerical simulation study on combustion of coal seam[J]. Coal Technology, 2017, 36(9): 29-31. | |
[63] | 刘盈, 白兴家. 火烧煤层提高强水敏储层煤层气采收率初探[J]. 煤矿安全, 2016, 47(10):180-183. |
LIU Ying, BAI Xingjia. Exploration on enhancing extraction of CBM in water-sensitive reservoir by combustion of coal seams[J]. Safety in Coal Mines, 2016, 47(10): 180-183. |
[1] | 汤勇, 唐凯, 夏光, 徐笛. BZ19-6低渗透储层反凝析污染及解除方法实验研究 [J]. 油气藏评价与开发, 2024, 14(1): 102-107. |
[2] | 梁运培, 张怀军, 王礼春, 秦朝中, 田键, 陈强, 史博文. 连续加载应力下真实裂缝流场和渗透率演化规律数值研究 [J]. 油气藏评价与开发, 2023, 13(6): 834-843. |
[3] | 张家伟, 刘向君, 熊健, 梁利喜, 任建飞, 刘佰衢. 双井同步压裂裂缝扩展规律离散元模拟 [J]. 油气藏评价与开发, 2023, 13(5): 657-667. |
[4] | 桑树勋,韩思杰,周效志,刘世奇,王月江. 华东地区深部煤层气资源与勘探开发前景 [J]. 油气藏评价与开发, 2023, 13(4): 403-415. |
[5] | 吴壮坤, 张宏录, 池宇璇, 印中华, 张壮. 新型排采泵在延川南深层煤层气井的改进及应用 [J]. 油气藏评价与开发, 2023, 13(4): 416-423. |
[6] | 施雷庭, 赵启明, 任镇宇, 朱诗杰, 朱珊珊. 煤岩裂隙形态对渗流能力影响数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(4): 424-432. |
[7] | 孔祥伟,谢昕,王存武,时贤. 基于灰色关联方法的深层煤层气井压后产能影响地质工程因素评价 [J]. 油气藏评价与开发, 2023, 13(4): 433-440. |
[8] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[9] | 李颖, 马寒松, 李海涛, GANZER Leonhard, 唐政, 李可, 罗红文. 超临界CO2对碳酸盐岩储层的溶蚀作用研究 [J]. 油气藏评价与开发, 2023, 13(3): 288-295. |
[10] | 候梦如,梁冰,孙维吉,刘奇,赵航. 矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究 [J]. 油气藏评价与开发, 2023, 13(1): 100-107. |
[11] | 陈劭颖,王伟,杨清纯,张立松. 干热岩储层多簇缝网压裂热流固顺序耦合模型研究 [J]. 油气藏评价与开发, 2022, 12(6): 869-876. |
[12] | 姚红生,肖翠,陈贞龙,郭涛,李鑫. 延川南深部煤层气高效开发调整对策研究 [J]. 油气藏评价与开发, 2022, 12(4): 545-555. |
[13] | 马东民,王馨,滕金祥,季长江,邵凯,郑超,伋雨松,惠鹏. 镜煤和暗煤与甲烷界面作用实验研究——以民和盆地低阶煤为例 [J]. 油气藏评价与开发, 2022, 12(4): 556-563. |
[14] | 石军太,李文斌,张龙龙,季长江,李国富,张遂安. 压裂过程数据对原始煤储层压力反演方法研究 [J]. 油气藏评价与开发, 2022, 12(4): 564-571. |
[15] | 史利燕,李卫波,康琴琴,李菲,齐佳新. CH4-煤吸附/解吸过程视电阻率变化的实验研究 [J]. 油气藏评价与开发, 2022, 12(4): 572-579. |
|