油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (3): 330-339.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.008
收稿日期:
2023-01-03
出版日期:
2023-06-26
发布日期:
2023-06-26
作者简介:
卢比(1989—),男,硕士,助理研究员,主要从事非常规油气开发方面的工作。地址:重庆市南川区渝南大道10号传媒中心中国石化重庆页岩气有限公司,邮政编码:408400。E-mai:基金资助:
Received:
2023-01-03
Online:
2023-06-26
Published:
2023-06-26
摘要:
随着页岩气开发不断深入,水平井实施压裂过程中邻井的干扰现象日益增多,对气田的产量、套管的安全、气井的管柱造成较大影响,有待明确压裂井间干扰的影响因素及降低干扰的治理对策。采用井下压力监测的方式证实压裂井间干扰的矿场表现,通过生产动态跟踪分析及微地震监测结果基本明确井网井距、压裂改造强度、天然裂缝是影响压裂水平井井间干扰的主要因素。对降低压裂干扰提出了压裂设计源头优化、采气井现场管理、生产运行调整3种治理对策,在现场应用中获得了较好的效果。
中图分类号:
卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究[J]. 油气藏评价与开发, 2023, 13(3): 330-339.
LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339.
表1
不同井网类型下干扰井井间距离统计"
类型 | 井号 | 空间距离/m | 平面距离/m | 垂向距离/m |
---|---|---|---|---|
平行井网 | SY2-2HF | 240 | 228 | 74 |
SY14-7HF | 348 | 338 | 86 | |
SY14-8HF | 260 | 258 | 33 | |
SY2HF | 350 | 332 | 109 | |
SY2HF | 334 | 319 | 97 | |
JY199-1HF | 285 | 273 | 82 | |
JY195-1HF | 308 | 282 | 114 | |
JY195-2HF | 254 | 251 | 78 | |
JY197-2HF | 280 | 279 | 24 | |
SY12-2HF | 195 | 189 | 47 | |
SY12-3HF | 259 | 257 | 30 | |
SY12-1HF | 363 | 362 | 22 | |
首尾相邻 | SY12-1HF | 145 | 145 | 14 |
SY2-12HF | 93 | 93 | 4 | |
SY2-12HF | 212 | 212 | 9 | |
SY2-3HF | 263 | 262 | 31 | |
SY14-5HF | 299 | 298 | 22 | |
SY14-5HF | 192 | 191 | 20 | |
SY14-5HF | 185 | 180 | 44 | |
SY1HF | 253 | 247 | 50 | |
SY1HF | 291 | 288 | 43 | |
SY1HF | 180 | 180 | 2 | |
SY20-2HF | 405 | 405 | 12 | |
JY195-5HF | 456 | 454 | 41 | |
上下气层 | SY14-S1HF | 236 | 221 | 82 |
SY14-S1HF | 101 | 9 | 101 | |
JY197-21HF | 161 | 99 | 128 | |
交错井网 | SY9-1HF | 361 | 333 | 139 |
表2
不同类型的母井干扰前后生产数据"
类型 | 序号 | 井号 | 压窜前产量/ 104 m3 | 复产产量/ 104 m3 | 恢复期/ d |
---|---|---|---|---|---|
压裂期间 连续生产 | 1 | SY2-2HF | 8.5 | 3.7 | 119 |
2 | SY14-7HF | 7.1 | |||
3 | SY12-1HF | 2.0 | 1.6 | 151 | |
4 | SY12-1HF | 2.0 | 1.6 | 121 | |
6 | SY2-12HF | 6.2 | 4.5 | 72 | |
7 | SY2-12HF | 6.2 | 4.5 | 82 | |
平均 | 5.3 | 3.2 | 109 | ||
压窜至气量 为0时关井 | 1 | SY9-1HF | 7.3 | 5.1 | 108 |
2 | SY2-3HF | 5.4 | 5.4 | 8 | |
3 | SY14-8HF | 9.8 | 6.6 | 140 | |
4 | SY14-S1HF | 2.3 | 1.6 | 95 | |
平均 | 6.2 | 4.7 | 88 | ||
压裂前提前 关井 | 1 | SY2HF | 5.0 | 4.9 | 3 |
2 | SY12-2HF | 2.7 | 2.0 | 2 | |
3 | SY12-3HF | 1.5 | 1.9 | 1 | |
4 | SY14-5HF | 15.8 | 15.8 | 6 | |
5 | SY1HF | 1.5 | 1.6 | 2 | |
6 | SY20-2HF | 2.5 | 3.0 | 5 | |
7 | JY199-1HF | 3.1 | 6.4 | 2 | |
8 | JY195-1HF | 3.9 | 6.5 | 32 | |
9 | JY195-2HF | 1.8 | 2.1 | 2 | |
10 | JY195-5HF | 1.8 | 1.9 | 48 | |
11 | JY197-2HF | 3.4 | 5.0 | 18 | |
12 | JY197-21HF | 5.7 | 4.8 | 2 | |
平均 | 4.1 | 4.7 | 11 |
[1] |
孙焕泉, 周德华, 蔡勋育, 等. 中国石化页岩气发展现状与趋势[J]. 中国石油勘探, 2020, 25(2): 14-26.
doi: 10.3969/j.issn.1672-7703.2020.02.002 |
SUN Huanquan, ZHOU Dehua, CAI Xunyu, et al. Progress and prospect of shale gas development of Sinopec[J]. China Petroleum Exploration, 2020, 25(2): 14-26.
doi: 10.3969/j.issn.1672-7703.2020.02.002 |
|
[2] | 蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气 “十三五” 发展成果与展望[J]. 石油与天然气地质, 2021, 42(1): 16-27. |
CAI Xunyu, ZHAO Peirong, GAO Bo, et al. Sinopec's shale gas development achievements during the “Thirteenth Five-Year Plan” period and outlook for the future[J]. Oil & Gas Geology, 2021, 42(1): 16-27. | |
[3] | 王濡岳, 胡宗全, 董立, 等. 页岩气储层表征评价技术进展与思考[J]. 石油与天然气地质, 2021, 42(1): 54-65. |
WANG Ruyue, HU Zongquan, DONG Li, et al. Advancement and trends of shale gas reservoir characterization and evaluation[J]. Oil & Gas Geology, 2021, 42(1): 54-65. | |
[4] | 卢志远, 何治亮, 余川, 等. 复杂构造区页岩气富集特征——以四川盆地东南部丁山地区下古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2021, 42(1): 86-97. |
LU Zhiyuan, HE Zhiliang, YU Chuan, et al. Characteristics of shale gas enrichment in tectonically complex regions—A case study of the Wufeng-Longmaxi Formations of Lower Paleozoic in southeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 86-97. | |
[5] | 肖佳林, 游园, 朱海燕, 等. 重庆涪陵国家级页岩气示范区开发调整井压裂工艺关键技术[J]. 天然气工业, 2022, 42(11): 58-65. |
XIAO Jialin, YOU Yuan, ZHU Haiyan, et al. Key technologies for development adjustment well fracturing in Chongqing Fuling National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2022, 42(11): 58-65. | |
[6] | 苏映宏. 滩坝砂油藏不同压裂方式下单井控制可采储量预测方法[J]. 石油实验地质, 2021, 43(4): 697-703. |
SU Yinghong. Prediction of single-well-constrained recoverable reserves in beach bar sand reservoir using different fracturing methods[J]. Petroleum Geology & Experiment, 2021, 43(4): 697-703. | |
[7] | 朱海燕, 宋宇家, 唐煊赫, 等. 页岩气藏加密井压裂时机优化——以四川盆地涪陵页岩气田X1井组为例[J]. 天然气工业, 2021, 41(1): 154-168. |
ZHU Haiyan, SONG Yujia, TANG Xuanhe, et al. Optimization of fracturing timing of infill wells in shale gas reservoirs: A case study on Well Group X1 of Fuling Shale Gas Field in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 154-168. | |
[8] |
谢军, 鲜成钢, 吴建发, 等. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J]. 中国石油勘探, 2019, 24(2): 174-185.
doi: 10.3969/j.issn.1672-7703.2019.02.005 |
XIE Jun, XIAN Chenggang, WU Jianfa, et al. Optimal key elements of geoengineering integration in Changning National Shale Gas Demonstration Zone[J]. China Petroleum Exploration, 2019, 24(2): 174-185.
doi: 10.3969/j.issn.1672-7703.2019.02.005 |
|
[9] | 周小金, 杨洪志, 范宇, 等. 川南页岩气水平井井间干扰影响因素分析[J]. 中国石油勘探, 2021, 26(2): 103-112. |
ZHOU Xiaojin, YANG Hongzhi, FAN Yu, et al. Analysis of factors affecting frac hits in horizontal shale gas wells in the southern Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(2): 103-112. | |
[10] | 刘伟新, 卢龙飞, 叶德燎, 等. 川东南地区奥陶系五峰组—志留系龙马溪组页岩气异常压力封存箱剖析与形成机制[J]. 石油实验地质, 2022, 44(5): 804-814. |
LIU Weixin, LU Longfei, YE Deliao, et al. Significance and formation mechanism of abnormally pressured compartments of shale gas in the Ordovician Wufeng-Silurian Longmaxi formations, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 804-814. | |
[11] | 柳筠, 张梦吟. 页岩气田储层含气性测井评价——以四川盆地涪陵页岩气田J区块为例[J]. 石油实验地质, 2021, 43(1): 128-135. |
LIU Yun, ZHANG Mengyin. Gas-bearing property evaluation by petrophysical logging in shale gas reservoirs: A case study in J area of Fuling shale gas field,Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 128-135. | |
[12] | 陈剑, 郭建春, 兰芳. 加密井井间干扰影响因素及对邻井产能的影响[J]. 中外能源, 2015, 20(4): 54-57. |
CHEN Jian, GUO Jianchun, LAN Fang. Influencing factors and effect on adjacent well productivity of interwell interference in infilled wells[J]. Sino-Global Energy, 2015, 20(4): 54-57. | |
[13] | 林彦兵, 胡艾国, 陈付虎, 等. 红河油田水平井压窜原因分析及防窜对策建议[J]. 油气藏评价与开发, 2013, 3(4): 56-61. |
LIN Yanbing, HU Aiguo, CHEN Fuhu, et al. Horizontal well fracturing channeling cause analysis and channeling prevention countermeasures in Honghe oilfield[J]. Petroleum Reservoir Evaluation and Development, 2013, 3(4): 56-61. | |
[14] | 何乐, 袁灿明, 龚蔚. 页岩气井间压窜影响因素分析和防窜对策[J]. 油气藏评价与开发, 2020, 10(5): 63-69. |
HE Le, YUAN Canming, GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(5): 63-69. | |
[15] | 滕小兰, 邱玲. 调整井压裂井间干扰实例分析及技术对策[J]. 石油钻采工艺, 2011, 33(2): 88-90. |
TENG Xiaolan, QIU Ling. Example analysis and technical measures for wells interference in adjustment well fracturing[J]. Oil Drilling & Production Technology, 2011, 33(2): 88-90. | |
[16] | WU K, OLSON J E. Mechanics analysis of interaction between hydraulic and natural fractures in shale reservoirs[C]// Paper URTEC-1922946-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014. |
[17] | ESQUIVEL R, BLASINGAME T A. Optimizing the development of the Haynesville shale-lessons learned from well-to-well hydraulic fracture interference[C]// Paper URTEC-2670079-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, Texas, USA, July 2017. |
[18] | SETH P, ELLIOTT B, SHARMA M M. Rapid analysis of offset well pressure response during fracturing: distinguishing between poroelastic, hydraulic and frac-hit responses in field data using pattern recognition[C]// Paper URTEC-2020-3129-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Virtual, July 2020. |
[19] | LIU Z, SAMUEL R, GONZALES A, et al. Analysis of casing fatigue failure during multistage fracturing operations[C]// Paper SPE-193189-MS presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2018. |
[20] | BARREDA D, SHAHRI M P, WAGNER R, et al. Impact of cyclic pressure loading on well integrity in multi-stage hydraulic fracturing[C]// Paper URTEC-2902463-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, July 2018. |
[21] | ADAMS N J, MITCHELL R F, EUSTES A W, et al. A causation investigation for observed casing failures occurring during fracturing operations[C]// Paper SPE-184868-MS presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, January 2017. |
[22] | KING G E, RAINBOLT M F, SWANSON C. Frac hit induced production losses: evaluating root causes, damage location, possible prevention methods and success of remedial treatments[C]// Paper SPE-187192-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, October 2017. |
[23] | RAINBOLT M F, ESCO J. Frac hit induced production losses:evaluating root causes, damage location, possible prevention methods and success of remediation treatments, PartⅡ[C]// Paper SPE-187192-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, October 2017. |
[24] | BAHORICH B, OISON J E, HOLDER J. Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments[C]// Paper SPE-160197-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, October 2012. |
[25] | SWANSON C, HILL W A, NILSON G, et al. Post-frac-hit mitigation and well remediation of Woodford horizontal wells with solvent/surfactant chemistry blend[C]// Paper URTEC-2902400-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, July 2018. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[3] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[4] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[5] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[6] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[7] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[8] | 林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究 [J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
[9] | 刘洪林,周尚文,李晓波. PCA-OPLS联合法快速评价页岩气井储量动用程度 [J]. 油气藏评价与开发, 2023, 13(4): 474-483. |
[10] | 邱小雪,钟光海,李贤胜,陈猛,凌玮桐. 不同井斜页岩气水平井流动特征的CFD模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 340-347. |
[11] | 聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法 [J]. 油气藏评价与开发, 2023, 13(3): 358-367. |
[12] | 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例 [J]. 油气藏评价与开发, 2023, 13(2): 240-246. |
[13] | 赵仁文,肖佃师,卢双舫,周能武. 高—过成熟陆相断陷盆地页岩与海相页岩储层特征对比——以徐家围子断陷沙河子组和四川盆地龙马溪组为例 [J]. 油气藏评价与开发, 2023, 13(1): 52-63. |
[14] | 李颖,李茂茂,李海涛,于皓,张启辉,罗红文. 水相渗吸对页岩储层的物化作用机理研究 [J]. 油气藏评价与开发, 2023, 13(1): 64-73. |
[15] | 何封,冯强,崔宇诗. W页岩气藏气井控压生产制度数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(1): 91-99. |
|